Search Results

1 - 3 of 3 items

  • Author: M. Sarnowski x
Clear All Modify Search
Durability of concrete pavement strengthened with asphalt layer with FRP fibres


Pavements made of cement concrete, used for road constructions, are damaged during use. This applies to both the pavements of rural and forest roads with very low traffic loads, as well as road pavements with high traffic loads. One of the most effective ways of repairing damaged concrete cement pavements is through placing an asphalt overlay on a concrete slab. In order to increase the fatigue life of the asphalt overlay, asphalt mixtures are modified with fibres. One technological solution is to use FRP (Fiber Reinforced Polymer), an innovative material with improved properties.

The aim of this paper is to assess the impact of asphalt overlays modified with a new type of fibres to strengthen the durability of weakened cement concrete pavement structures.

On the basis of the conducted analyses, it was shown that the use of an asphalt layer reinforcement increases fatigue life, for both 15 cm thick prefabricated slabs and a typical road pavement for average traffic made of 25 cm doweled and anchored concrete slabs. There was a significant increase in the fatigue life of the concrete pavement structure as a result of modifying the overlaid asphalt mixture with FRP fibres.

Open access
Properties of Asphalt Concrete with Basalt-Polymer Fibers


Asphalt mixtures are commonly used for the pavement construction for national roads with a high traffic load, as well as local roads with low traffic load. The constructions of local road pavement consisting of thinner, more flexible layers located on less stable subbase than the pavement of national roads, require reinforcement with asphalt layers characterized by increased fatigue life. Technologies that allow quick repairs and reinforcements, while improving the durability of the road pavement are being sought. Such technologies include the use of modifications of asphalt mixtures with special fibers. The paper presents the results of investigations of the properties of asphalt mixtures modified with innovative basalt-polymer fibers FRP. On the basis of the obtained test results according to the Marshall method, stiffness modulus and fatigue durability, the technical properties of asphalt mixtures with FRP fibers addition were improved. This technology significantly increases the fatigue life of asphalt concrete dedicated for repairs and reinforcements of road pavements.

Open access
Fortification of Damaged Asphalt Pavements with Cement Concrete Slabs Reinforced with Next-Gen Bars – Part I: Laboratory Study


Over the course of operation, asphalt road pavements are subjected to damage from car traffic loads and environmental factors. One of the possible methods of strengthening damaged asphalt pavements may be the application of an additional rigid layer in the form of a cement concrete slab with continuous reinforcement.

This paper presents a material-technological and structural solution for composite pavement where a cement concrete slab with continuous HFRP bar reinforcement is used for strengthening. Based on laboratory tests, the serviceability of composite bar reinforcement of rigid pavement slabs was shown. A design for strengthening asphalt pavement with a concrete slab with steel bar and corresponding HFRP bar reinforcement was developed. The composition of a pavement cement concrete mix was designed, and experimental sections were formed. Based on laboratory tests of samples collected from the surfaces of experimental sections and the diagnostic tests carried out in “in situ” conditions, the authors will try, in the nearest future (Part II: In situ observations and tests), to confirm the effectiveness of strengthening asphalt pavements with cement concrete slabs with HFRP components.

Open access