Search Results

1 - 8 of 8 items

  • Author: M. Rutkis x
Clear All Modify Search

Chromofore Poling in Thin Films of Organic Glasses. 1. Overview of Corona Discharge Application

The introductory article in a series of works on the chromofore poling in thin films of organic glasses presents an overview of corona discharge applications, with a brief excursion into physics of the phenomenon. The authors consider this technique as related to the nonlinear optical (NLO) polymers. Its key points are as follows.

In the ambient air such discharge is strongly affected by variable humidity and, consequently, uncertain concentration of the predominant charge carrier ((H2O)nH+). To realize a repeatable poling process the composition of discharge atmosphere should be controlled (e.g. for pure nitrogen gas). In the case of discharge in N2 the highly reactive ozone production could be avoided. To obtain second-order nonlinear activity of polymeric materials, a simple point/plane (two-electrode) technique of corona charging is successfully applied, which however does not provide information about the sample surface charge buildup and the efficiency of poling process. To study the dynamics of both the poling and the charge transport processes a three-electrode charging system - the corona triode - should be used.

Chromophore Poling in Thin Films of Organic Glasses. 2. Two-Electrode Corona Discharge Setup

In Part 1 of the article we provided description of the corona discharge physics and overview of the methods used for corona poling in thin organic films. Subsequent sections describe comparatively simple technical methods for poling the organic nonlinear optical polymers using a two-electrode (point-to-plate or wire-to-plate) technique. The polarization build-up was studied by the DC positive corona method for poling the nonlinear optical (NLO) polymers. The experimental setup provides the corona discharge current from 0.5 μA up to 3 μA by applying 3 kV - 12 kV voltage to the corona electrode and makes possible selection among the types of corona electrodes (needle, multi-needle, wire, etc.). The results of experimental testing of the poling setup show that at fixed optimal operational parameters of poling - the sample orientation temperature and the discharge current - the corona charging of polymeric materials can successfully be performed applying the two-electrode technique. To study the dynamics of both poling and charge transport processes the three-electrode charging system - a corona triode - should be applied.


Determination of electric potential difference using the Kelvin probe, i.e. vibrating capacitor technique, is one of the most sensitive measuring procedures in surface physics. Periodic modulation of distance between electrodes leads to changes in capacitance, thereby causing current to flow through the external circuit. The procedure of contactless, non-destructive determination of contact potential difference between an electrically conductive vibrating reference electrode and an electrically conductive sample is based on precise control measurement of Kelvin current flowing through a capacitor. The present research is devoted to creation of a new low-cost miniaturised measurement system to determine potential difference in real time and at high measurement resolution. Furthermore, using the electrode of a reference probe, the Kelvin method leads to both the indirect measurement of an electronic work function, or a contact potential of sample, and of a surface potential for insulator type samples.

In the article, the first part of the research, i.e., the basic principles and prerequisites for establishment of such a measurement system are considered.


The present research is devoted to creation of a new low-cost miniaturised measurement system for determination of potential difference in real time and with high measurement resolution. Furthermore, using the electrode of the reference probe, Kelvin method leads to both an indirect measurement of electronic work function or contact potential of the sample and measurement of a surface potential for insulator type samples. The bucking voltage in this system is composite and comprises a periodically variable component. The necessary steps for development of signal processing and tracking are described in detail.

The corona discharge is described focusing on the advantages of corona triode techniques for the direct current (DC) positive poling of optical polymers. The proposed experimental setup allows the corona poling of nonlinear optical (NLO) polymers in the modes of DC constant current (the lowest 1nA) and of the fixed corona-grid voltage, making it possible to carry out the corona-onset poling at elevated temperature (COPET) up to 200 oC. The setup also provides a wide range of the corona discharge voltage (3 kV - 15 kV), variable reciprocal distance of electrodes as well as the possibility to choose from different types of the corona electrode (needle, multi-needle, wire, etc.). By keeping the corona-to-grid voltage constant, a stable corona discharge at electrode is attained. The grid voltage can be varied in the range from 0 to 3kV. The corona poling area on the sample surface is pre-defined by placing ring spacers above it. The setup is completely computerized, allowing both control and monitoring of the corona discharge, which promotes research into the process of charging NLO polymer samples and selection of the optimal poling mode. Using the voltage-current characteristics and the second-harmonic measurements of a poled polymer we also demonstrate the influence of the setup parameters on the efficiency of poling the thin film NLO polymers.


Single sheet graphene (SG) is an innovative transparent material with high electrical and thermal conduction the use of which in transparent electrodes instead of traditional materials improves the performance of optoelectronic devices. In this study, graphene oxide (GO) has been obtained by a modified Hummer`s method followed by an advanced technique of water removal (lyophilisation). The Langmuir-Blodgett (LB) method was applied to transfer GO from suspension to substrate. To optimize the deposition process, as suspending and spreading solvents the benzene and benzene/methanol mixtures were chosen instead of previously studied water suspensions. The number of GO layers in suspension is reduced by exfoliation in order to obtain a single GO monolayer. For this purpose, sonication and centrifugation of GO sheets are carried out. Finally, the effect of variously treated glass substrate surfaces on the deposition efficiency has been studied. In the work, it is shown that ozonization of glass substrate improves the deposition outcome, while ozonization of indium tin oxide (ITO) glass substrate is necessary to perform such deposition. The obtained GO suspensions and LB thin films have been studied using a scanning electron microscope (SEM)


Liquid crystal display (LCD) industry is among the most rapidly growing and innovating industries in the world. Here continuously much effort is devoted towards developing and implementing new types of LCDs for various applications. Some types of LCDs require relatively high voltages for their operation. For example, bistable displays, in which an altering field at different frequencies is used for switching from clear to scattering states and vice versa, require electric fields at around 10 V/μm for operation. When operated at such high voltages an electrical breakdown is very likely to occur in the liquid crystal (LC) cell. This has been one of the limiting factors for such displays to reach market.

In the present paper, we will report on the results of electrical breakdown investigations in high-voltage LC cells. An electrical breakdown in the cell is observed when current in the liquid crystal layer is above a specific threshold value. The threshold current is determined by conductivity of the liquid crystal as well as point defects, such as dust particles in LC layer, pinholes in coatings and electrode hillocks. In order to reduce the currents flowing through the liquid crystal layer several approaches, such as electrode patterning and adding of various buffer layers in the series with LC layer, have been tested. We demonstrate that the breakdown voltages can be significantly improved by means of adding insulating thin films.


We report on a screen printing fabrication process for large-area SU-8 layers utilised for the preparation of microstructures in display devices such as microelectronic, electrowetting or bistable devices. The screen printing method has been selected for its effectiveness and simplicity over traditionally used spin-coating ones. Layers and microstructures produced thereof have shown proper homogeneity. Relationships between screen parameters to coating thickness have been established. Coating on an ITO (indium tin oxide) hydrophobic surface is possible when surface has been treated by UV/Ozone to increase its aqueous ability. To this end, the hydrophilic microstructure grids have been successfully built on a hydrophobic layer by screen printing and traditional lithography processes. Compared to conventional spin-coating methods, the screen printing method offers the advantages of simple, cheap and fast fabrication, and is especially suitable for large-area display fabrication