Search Results

You are looking at 1 - 1 of 1 items for

  • Author: M. Namazov x
Clear All Modify Search
Open access

M. Namazov and A. Alili

Abstract

This paper deals with a systematic design procedure that guarantees the stability and optimal performance of the nonlinear systems described by Takagi-Sugeno fuzzy models. Takagi-Sugeno fuzzy model allows us to represent a nonlinear system by linear models in different state space regions. The overall fuzzy model is obtained by fuzzy blending of these linear models. Then based on this model, linear controllers are designed for each linear model using parallel distributed compensation. Stability and optimal performance conditions for Takagi-Sugeno fuzzy control systems can be represented by a set of linear matrix inequalities which can be solved using software packages such as MATLAB’s LMI Toolbox. This design procedure is illustrated for a nonlinear system which is described by a two-rule Takagi-Sugeno fuzzy model. The fuzzy model was built in MATLAB Simulink and a code was written in LMI Toolbox to determine the controller gains subject to the proposed design approach.