Search Results

You are looking at 1 - 10 of 16 items for

  • Author: M. Nadolski x
Clear All Modify Search
Open access

M. Nadolski

Abstract

High-tin bronzes are used for church bells and concert bells (carillons). Therefore, beside their decorative value, they should also offer other functional properties, including their permanence and good quality of sound. The latter is highly influenced by the structure of bell material, i.e. mostly by the presence of internal porosity which interferes with vibration of the bell waist and rim, and therefore should be eliminated. The presented investigations concerning the influence of tin content ranging from 20 to 24 wt% on mechanical properties of high-tin bronzes allowed to prove the increase in hardness of these alloys with simultaneous decrease in the tensile and the impact strengths (Rm and KV, respectively) for the increased tin content. Fractures of examined specimens, their porosity and microstructures were also assessed to explain the observed regularities. A reason of the change in the values of mechanical properties was revealed to be the change in the shape of α-phase crystals from dendritic to acicular one, and generation of grain structure related to the increased Sn content in the alloy.

Open access

M. Nadolski, G. Golański, J. Klimas, M. Szota and J. Szymański

Abstract

The material subject to investigation was two commercial alloys of cobalt CoCrW (No. 27 and 28) used in prosthodontics. The scope of research included performing an analysis of microstructure and functional properties (microhardness, wear resistance and corrosion resistance), as well as dilatometric tests. The examined alloys were characterized by diverse properties, which was considerably influenced by the morphology of precipitates in these materials. Alloy No. 27 has a higher corrosion resistance, whereas alloy No. 28 shows higher microhardness, better wear resistance and higher coefficient of linear expansion. Lower value of the expansion coefficient indicates less probability of initiation of a crack in the facing ceramic material.

Open access

M. Nadolski, Z. Konopka, M. Łągiewka and A. Zyska

Abstract

The performed examinations concerning the process of filling the plaster ceramic moulds with aluminium alloys allowed to assess the influence of various methods of introducing the metal into the mould cavity on the macro- and microstructure of the obtained experimental castings. The comparison was performed for castings with graded wall thickness made either of EN AC-44000 alloy or of EN AC-46000 alloy, produced either by gravity casting, or by gravity casting with negative pressure generated around the mould (according to the Vacumetal technology), or by counter-gravity casting. It was found that the silicon crystals grow in size with an increase in wall thickness due to the slower cooling and solidification of castings

Open access

M. Nadolski, Z. Konopka, M. Łągiewka and A. Zyska

Abstract

The work deals with the influence of change in the filling conditions of the ceramic moulds with plaster binder on the presence of gaseous porosity and the microstructure of the achieved test castings with graded wall thickness. Castings made of EN AC-44000 alloy, produced either by gravity casting, or by gravity casting with negative pressure generated around the mould (according to the Vacumetal technology), or by counter-gravity casting were compared. The results of examinations concerning the density of the produced castings indicate that no significant change in porosity was found. The increased size of silicon crystals was found for the increased wall thicknesses due to the slower cooling and solidification of castings.

Open access

M. Nadolski, Z. Konopka, M. Łągiewka and A. Zyska

Abstract

Substituting of ethyl silicate with ecologic sols of colloidal silica in the investment casting technology, resulting from the increased demands concerning environmental protection, caused the prolongation of production cycle for precision castings produced in multi-layer thin-walled ceramic shell moulds. Modification of Sizol 030 binder with benzoyl peroxide, proposed in the paper, was aimed at restriction of time needed for realization of a single layer of the shell mould, and by the same, of such a mould as a whole. Examination of kinetics of the drying process were held for the layers made of prepared moulding material and the influence of binder modification on the mould curing time was determined.

Open access

Z. Konopka, M. Łągiewka, M. Nadolski and A. Zyska

Abstract

The purpose of the work is the determination of the strengthening coefficient for the AlSi13Cu2 alloy matrix composite reinforced with chopped carbon fibre and produced by high-pressure casting method. This coefficient was determined during the static tensile test using the Ramberg-Osgood equation. The regression relationships between strain and stress were established, serving as a basis for finding the strengthening coefficient values. The measurements and calculations were performed also for the matrix alloy itself, for the purpose of comparison. The examined coefficient decreased with an increase of fibre fraction in the composite. Its value for composite containing 15 vol. % of chopped fibre was found to be lower by 30% than the value determined for matrix alloy, what means the strengthening of the alloy to such a degree.

Open access

Z. Konopka, A. Zyska, M. Łągiewka and M. Nadolski

Abstract

The paper presents the method of preparing a composite slurry composed of AlSi11 alloy matrix and 10 vol.% of SiC particles, as well as the method of its high-pressure die casting and the measurement results concerning the castability of the obtained composite. Composite castings were produced at various values of the piston velocity in the second stage of injection, diverse intensification pressure values, and various injection gate width values. There were found the regression equations describing the change of castability of the examined composite as a function of pressure die casting process parameters. The conclusion gives the analysis and the interpretation of the obtained results.

Open access

M. Łągiewka, Z. Konopka, M. Nadolski and A. Zyska

Abstract

The presented work is aimed to deal with the influence of changes in the value of negative (relative) pressure maintained in the die cavity of pressure die casting machine on the surface quality of pressure castings. The examinations were held by means of the modified Vertacast pressure die casting machine equipped with a vacuum system. Castings were produced for the parameters selected on the basis of previous experiments, i.e. for the plunger velocity in the second stage of injection at the level of 4 m/s, the pouring temperature of the alloy equal to 640°C, and the die temperature of 150°C. The examinations were carried on for three selected values of negative gauge pressure: - 0.03, - 0.05, and - 0.07 MPa. The quality of casting was evaluated by comparing the results of the surface roughness measurements performed for randomly selected castings. The surface roughness was measured by means of Hommel Tester T1000. After a series of measurements it was found that the smoothest surface is exhibited by castings produced at negative gauge pressure value of - 0.07 MPa.

Open access

A. Zyska, Z. Konopka, M. Łągiewka and M. Nadolski

Abstract

A numerical model of binary alloy crystallization, based on the cellular automaton technique, is presented. The model allows to follow the crystallization front movement and to generate the images of evolution of the dendritic structures during the solidification of a binary alloy. The mathematic description of the model takes into account the proceeding thermal, diffusive, and surface phenomena. There are presented the results of numerical simulations concerning the multi-dendritic growth of solid phase along with the accompanying changes in the alloying element concentration field during the solidification of Al + 5% wt. Mg alloy. The model structure of the solidified casting was achieved and compared with the actual structure of a die casting. The dendrite interaction was studied with respect to its influence on the generation and growth of the primary and secondary dendrite arms and on the evolution of solute segregation both in the liquid and in the solid state during the crystallization of the examined alloy. The morphology of a single, free-growing dendritic crystal was also modelled. The performed investigations and analyses allowed to state e.g. that the developed numerical model correctly describes the actual evolution of the dendritic structure under the non-equilibrium conditions and provides for obtaining the qualitatively correct results of simulation of the crystallization process.

Open access

A. Zyska, Z. Konopka, M. Łągiewka and M. Nadolski

Abstract

The results of examinations of the influence of titanium-boron inoculant on the solidification, the microstructure, and the mechanical properties of AlZn20 alloy are presented. The examinations were carried out for specimens cast both of the non-modified and the inoculated alloy. There were assessed changes in the alloy overcooling during the first stage of solidification due to the nuclei-forming influence of the inoculant. The results of quantitative metallographic measurements concerning the refinement of the grain structure of casting produced in sand moulds are presented. The cooling rate sensitivity of the alloy was proved by revealing changes in morphology of the α-phase primary crystals. Differences in mechanical properties resulting from the applied casting method and optional inoculation were evaluated.