Search Results

You are looking at 1 - 8 of 8 items for

  • Author: M. Hrubovčáková x
Clear All Modify Search
Open access

I. Vasková, M. Hrubovčáková and M. Conev

Abstract

In recent years, ingredients, also known as additives, which appreciably affect the quality of the casting surface, come to the fore. Additives - lower the temperature at which SiO2 (major component of silica sand) begins to soften and create a melt on the surface of the grains, increase the reactivity and decrease the temperature of a transition to tridimite and cristobalit. These passages support the increase of volume of subsurface sand stress and the tension for the formation of burrs and other casting defects on the surface of the core or the mold.

Nowadays, as a great emphasis is put on the quality of the casts, it is therefore necessary to pay attention to these additives, which can effectively reduce the labor intensity in the production of castings and ensure a quality surface of castings.

Open access

M. Hrubovčáková, I. Vasková, M. Benková and M. Conev

Abstract

The main bulk density representation in the molding material is opening material, refractory granular material with a particle size of 0.02 mm. It forms a shell molds and cores, and therefore in addition to activating the surface of the grain is one of the most important features angularity and particle size of grains. These last two features specify the porosity and therefore the permeability of the mixture, and thermal dilatation of tension from braking dilation, the thermal conductivity of the mixture and even largely affect the strength of molds and cores, and thus the surface quality of castings. [1]

Today foundries, which use the cast iron for produce of casts, are struggling with surface defects on the casts. One of these defects are veining. They can be eliminated in several ways. Veining are foundry defects, which arise as a result of tensions generated at the interface of the mold and metal. This tension also arises due to abrupt thermal expansion of silica sand and is therefore in the development of veining on the surface of casts deal primarily influences and characteristics of the filler material – opening material in the production of iron castings.

Open access

M. Kupková, M. Hrubovčáková, M. Kabátová and M. Kupka

Abstract

Elemental iron and manganese powders were blended to form mixtures containing 25, 30 and 35wt.% Mn. Mixtures were compressed into prismatic bars and sintered. Some of the bars were repressed and resintered. Compared to a bar pressed and sintered once, the bar pressed and sintered twice possessed a higher relative density, a higher bending stiffness, and a grid microindentation data set with a lower variance. Bars were immersed in Hank's solution for eight weeks. After this procedure, the bending stiffness were found reduced for all bars except for those pressed, sintered and only repressed, the bending stiffness of which remained unchanged. The repressing has most likely closed up throats connecting the clusters of pores with the free surface of a bar, reducing thus a surface area exposed to a corrosive attack. The resintering has opened up those throats, the electrolyte could fill accessible pores and corrosion weakened the near-surface material, reducing thus a bar's bending stiffness.

Open access

I. Vasková, M. Conev and M. Hrubovčáková

Abstract

In modern times, there are increasing requirements for products quality in every part of manufacturing industry and in foundry industry it is not different. That is why a lot of foundries are researching, how to effectively produce castings with high quality. This article is dealing with search of the influence of using different types of risers or chills on shrinkage cavity production in ductile iron castings. Differently shaped risers were designed using the Wlodawer’s modulus method and test castings were poured with and without combination of chills. Efficiency of used risers and chills was established by the area of created shrinkage cavity using the ultrasound nondestructive method. There are introduced the production process of test castings and results of ultrasound nondestructive reflective method. The object of this work is to determine an optimal type of riser or chill for given test casting in order to not use overrated risers and thus increase the cost effectiveness of the ductile iron castings production.

Open access

I. Vasková, M. Hrubovčáková, J. Malik and Š. Eperješi

Abstract

Ductile cast iron (GS) has noticed great development in last decades and its boom has no analogue in history humankind. Ductile iron has broaden the use of castings from cast iron into areas, which where exclusively domains for steel castings. Mainly by castings, which weight is very high, is the propensity to shrinkage creation even higher. Shrinkage creation influences mainly material, construction of casting, gating system and mould. Therefore, the main realized experiment was to ascertain the influence of technological parameters of furane mixture on shrinkage creation in castings from ductile iron. Together was poured 12 testing items in 3 moulds forto determine and compare the impact of various technological parameters forms the propensity for shrinkage in the casting of LGG.

Open access

I. Vasková and M. Hrubovčáková

Abstract

Bentonite is clay rock, which is created by decomposition of vulcanic glass. It is formed from mixture of clay minerals of smectite group, mainly montmorillonite, beidellite and nontronite. Its typical characteristics is, that when in contact with water, it intensively swells. First who used this term was W.C. Knight in 1887. The rock had been named after town Fort Benton in American state Montana. For its interesting technological properties and whiteness has wide technological use. Bentonite is selectively mined and according to its final use separately modified, which results in high quality product with specific parameters.

In the beginning of 21st century belong bentonite moulding mixtures in foundry to always perspective. Mainly increased ratio of ductile cast iron castings production cannot be ensured without the need of quality bentonite. Great area of scope remains to further research of moulding materials, which return also to bentonite producers.

Open access

M. Conev, I. Vasková, M. Hrubovčáková and P. Hajdúch

Abstract

This paper contains basic information about new processes for cores for cylinder heads production with alkali silicate based inorganic binders. Inorganic binders are coming back to the foreground due to their ecologically friendly nature and new technologies for cores production and new binder systems were developed. Basically these binder systems are modified alkali silicates and therefore they carry some well-known unfavourable properties with their usage. To compensate these disadvantages, the binder systems are working with additives which are most often in powder form and are added in the moulding material. This paper deals with decoring behaviour of different moulding sands as well as the influence of chosen additives on knock-out properties in laboratory terms. For this purpose, specific methods of specimen production are described. Developed methods are then used to compare decoring behaviour of chosen sands and binder systems.

Open access

M. Kupková, M. Hrubovčáková, A. Zeleňák, M. Sułowski, A. Ciaś, R. Oriňáková, A. Morovská Turoňová, K. Žáková and M. Kupka

Abstract

Iron samples and Fe-Mn alloys with Mn content of 25 wt.% and 30 wt.% were prepared by blending, compressing and sintering with the aim to study their dimensional changes, microstructure, microhardness distribution and primarily the electrochemical corrosion behaviour in a simulated body environment.

The light microscopy (LM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and micro-hardness measurements revealed a microheterogeneous multiphase structure of sintered Fe-Mn samples. The potentiodynamic tests have demonstrated that the corrosion rates of such Fe-Mn alloys immersed in Hank’s solution were higher than those for a pure iron, and also higher than the rates reported for homogeneous Fe-Mn alloys.