Search Results

You are looking at 1 - 3 of 3 items for

  • Author: M. Guerrieri x
Clear All Modify Search
Open access

M. Guerrieri and G. Parla

Abstract

The mechanical characteristics of the railway superstructure are related to the properties of the ballast, and especially to the particle size distribution of its grains. Under the constant stress-strain of carriages, the ballast can deteriorate over time, and consequently it should properly be monitored for safety reasons. The equipment which currently monitors the railway superstructure (like the Italian diagnostic train Archimede) do not make any “quantitative” evaluation of the ballast. The aim of this paper is therefore to propose a new methodology for extracting railway ballast particle size distribution by means of the image processing technique. The procedure has been tested on a regularly operating Italian railway line and the results have been compared with those obtained from laboratory experiments, thus assessing how effective is the methodology which could potentially be implemented also in diagnostic trains in the near future.

Open access

F. Corriere, D. Di Vincenzo and M. Guerrieri

Abstract

The practice capacity of a railway junction depends, in addition to the effective operation’s conditions, by the potential risk factors related to the design plan of the railway station. With the aim of an approach based on the “fuzzy sets” it is possible to determine the numeric value of the practice capacity by the logic - qualitative relations between the features of the railway junction and the potential risk factors. This methodology permits to try out the absolute value of a suitable vector β, (less then the unit) for the utilization of the theoretic capacity in conditions of maximum reliability of the system related to the aspect of safety (technique “fail safe”).

Open access

F. Corriere, M. Guerrieri, D. Ticali and A. Messineo

Abstract

The road pollutant emissions, above all in urban context, are correlated to many infrastructural parameters and to traffic intensity and typology. The research work on road junction geometry, carried out in European research centres, has recently allowed to design new road intersection types which are of undoubted interest, especially in terms of traffic functionality and safety, like the flower roundabouts (in which right-turn manoeuvres do not conflict with the circulating flow). The main objective of this paper is to propose a model for the estimation the capacity, delay, levels of service and the pollutant emissions into flower roundabouts. A comparative analysis between conventional roundabout and flower roundabout has been carried out in terms of CO, CO2, CH4, NO, PM2,5 and PM10 vehicular emissions, evaluated by mean of COPERT Software which is developed as a European tool for the calculation of emissions from the road transport sector.