Search Results

You are looking at 1 - 4 of 4 items for

  • Author: M. Fröhlichová x
Clear All Modify Search
Open access

M. Fröhlichová, R. Findorák and J. Legemza

Paper presents the results from the study of the effect of materials with titanium addition on the strength properties of the iron ore sinter.

The sinters with TiO2 addition or without TiO2 addition prepared in laboratory were applied in this research and were compared based on the structural and phase composition. Exploited was the method of the X-ray diffraction and method of elemental EDX analysis applying the electron raster microscope with the energo-dispersion analyser. Confirmed was the relationship between the sinter structure and its strength. Higher strength of the sinter without TiO2 addition is the result of the different phase composition of the compared sinters. In the sinter production considered should be not only the chemical composition of the entry components of the charge and the chemical composition of the final product but also its structural and phase composition.

Open access

M. Fröhlichová, D. Ivanišin, A. Mašlejová, R. Findorák and J. Legemza

The work deals with examination of the influence of the ratio between iron ore concentrate and iron ore on quality of produced iron ore sinter. One of the possibilities to increase iron content in sinter is the modification of raw materials ratio, when iron ore materials are added into sintering mixture. If the ratio is in favor of iron ore sinter, iron content in resulting sintering mixture will be lower. If the ratio is in favor of iron ore concentrate and recycled materials, which is more finegrained, a proportion of a fraction under 0.5 mm will increase, charge permeability property will be reduced, sintering band performance will decrease and an occurrence of solid particulate matter in product of sintering process will rise. The sintering mixture permeability can be optimized by increase of fuel content in charge or increase of sinter charge moisture. A change in ratio between concentrate and iron ore has been experimentally studied. An influence of sintering mixture grain size composition, a charge grains shape on quality and phase composition on quality of the produced iron sinter has been studied.

Open access

M. Fröhlichová, J. Legemza, R. Findorák and A. Mašlejová


This article contains characteristics of selected types of biomass, which can be considered as an alternative fuel in the production of iron ore agglomerate.

Selected types of biomass were evaluated by chemical analysis, X-ray phase analysis and microscopic analysis using the camera on microscope Olympus BX 51. Biomass was characterized according to its structure, chemical composition and chemical composition of ash. The obtained data were confronted with the data for coke breeze and based on the results, conclusions were made about the possible use of selected types of biomass as an alternative fuel in the process of iron ore agglomerate production.

Open access

R. Mežibrický, M. Fröhlichová and A. Mašlejová

The effort to minimize CO2 emissions leads the existing integrated steel plants to implement alternative biomass-based fuels that dispose of equilibrium carbon balance. The fuel is a key factor in the iron ore sinter production, so it is essential to know its impact not just on mechanical properties of the finished sintered ore but also on the mineral composition as the mineral phases together determine all observed sinter properties. For this purpose the samples prepared by replacing a part of coke breeze with charcoal or walnut shell substitute were subjected to the observation under the light microscope, also using etching, to the phase identification by chemical EDX analysis on the scanning electron microscope and to the phase composition quantification by X-Ray diffraction analysis. The studied microstructure areas in the vicinity of the pores left by fuel grains were neither characterized by different phases nor by changed chemical composition of these phases even thought mineral matter of the used fuels were substantially different in terms of the chemical composition. The only feature of the burned substitute fuels were ash particles arranged in characteristic shapes. The main reason of variation in ratios of respective mineral phases of samples appeared to be thermal conditions that were reflected in the content of unreacted non-ferrous phases. Coke substitution in the sinter mixture has no negative impact on the phase composition of the produced sinters, which confirms the prospective use of biofuels in the sintering process.