Search Results

You are looking at 1 - 4 of 4 items for

  • Author: M. Dereń x
Clear All Modify Search
Open access

M. Łucarz and M. Dereń

Abstract

The results of investigations of thermal reclamation of spent moulding sands originating from an aluminum alloy foundry plant are presented in this paper. Spent sands were crushed by using two methods. Mechanical fragmentation of spent sand chunks was realized in the vibratory reclaimer REGMAS. The crushing process in the mechanical device was performed either with or without additional crushing-grinding elements. The reclaimed material obtained in this way was subjected to thermal reclamations at two different temperatures. It was found that a significant binder gathering on grain surfaces favors its spontaneous burning, even in the case when a temperature lower than required for the efficient thermal reclamation of furan binders is applied in the thermal reclaimer. The burning process, initiated by gas burners in the reclaimer chamber, generates favorable conditions for self-burning (at a determined amount of organic binders on grain surfaces). This process is spontaneously sustained and decreases the demand for gas. However, due to the significant amount of binder, this process is longer than in the case of reclaiming moulding sand prepared with fresh components.

Open access

M. Łucarz, R. Dańko, M. Dereń and M. Skrzyński

Abstract

In this article, there were presented the results of research on combined mechanical and thermal regeneration of waste moulding sand with furfuryl resin originated from one of national foundries manufacturing aluminium alloys castings. Attempts of mechanical reclamation were led on the REGMAS reclaimer enabling to realize preliminary and primary reclamation with use of two modes of mechanical interactions on waste moulding sand. In the first attempt the reclaimer worked without any additional regenerating elements, and as the second solution, the reclaimer operated with additional crushing and abrasive elements to increase the result of primary reclamation. Thermal reclamation was led in the prototypic thermal reclaimer, enabling to fully control the process of grain matrix recovery. As a result of completed investigations the small efficiency of mechanical reclamation was determined. However, use of combined regeneration allowed for obtaining grain matrix of high purity. Thermal regeneration was conducted in prototypic thermal reclaimer. Evaluation of reclaim (reclaimed material) quality was carried out in the way of iginition losses and grain-size analysis, surface morphology and also by executing of strength testing of moulding sand prepared on obtained grain matrix for the particular reclamation operations.

Open access

M. Dereń, M. Łucarz, A. Roczniak and A. Kmita

Abstract

In this article, there were presented results of research on influence of reclamation process on the ecological quality of reclaim sand with furan resin used in nonferrous foundry. The quality of reclaimed sand is mainly define by two group of chemical substances from elution of reclaimed sand: Dissolves Organic Carbon (DOC) and Total Dissolves Solids (TDS). Reclaimed sand used in test was prepared in experimental thermal reclaimer and mechanical vibration reclaimer REGMAS installed in Faculty of Foundry Engineering at University Of Science and Technology in Krakow. The reference point is molding sand shaking out and crumble in jaw crusher. Test of elution was made in accredited laboratory in Center For Research and Environmental Control in Katowice up to the standard with Dissolves Organic Carbon (DOC) - PN-EN 1484:1999; Total Dissolves Solids (TDS) - PN-EN 15216:2010. The standard for elution test is PN-EN 12457- 4:2006. Except that we were made loss of ignition test, to check how many resin was rest on sand grains.

Open access

J. Dańko, R. Dańko, M. Skrzyński, M. Dereń and Ł. Zygmunt

Abstract

The investigation results of the mechanical reclamation of spent moulding sands from the Cordis technology are presented in the paper. The quality assessment of the obtained reclaim and the influence of the reclaim fraction in a matrix on the core sand strength is given. The reclaim quality assessment was performed on the basis of the determination of losses on ignition, Na2O content on reclaim grains and pH values. The reclaim constituted 100%, 75% and 50% of the core sand matrix, for which the bending strength was determined. The matrix reclamation treatment was performed in the experimental rotor reclaimer RD-6. Spent sands were applied in as-delivered condition and after the heating to a temperature of 140 °C. Shaped samples for strength tests were made by shooting and hardening of sands in the warmbox technology.