Search Results

You are looking at 1 - 4 of 4 items for

  • Author: M. Asad x
Clear All Modify Search
Open access

M. Asad and H.U. Rahim

Abstract

The lower Indus basin is one of the prolific basins in Pakistan in which the C-interval of lower Goru formation act as a reservoir. With the help of petrophysical interpretation production zone is recognized and also porosity is calculated at the reservoir level. Through porosity we are able to calculate Ksat. A model based inversion of 2D seismic inversion was performed to ascertain three dimensional dispersion of acoustic impedance in the investigation zone and we have recognized new areas where porosity distribution is maximum and site which is suitable for new well. Porosity and Acoustic impedance are typically contrarily relative to each other. Presently porosity can be anticipated in seismic reservoir characterization by utilizing acoustic impedance from seismic inversion far from well position.

Open access

Ijaz Ali, Amjid Iqbal, Arshad Mahmood, A. Shah, M. Zakria and Asad Ali

Abstract

Cd1−xZnxSe (x = 0, 0.40 and 1) thin films were deposited on a glass substrate at room temperature by closed space sublimation method. Optical investigation has been performed using spectrophotometry and ellipsometry. It has been found that for as deposited films the optical band gap increased and the optical constants decreased with increasing Zn content. To improve the optical properties of Cd1−xZnxSe thin films annealing effect at 400 °C was taken into consideration for various Zn contents. It was observed that the optical transmittance and band gap decreased while optical constants increased with increasing Zn content after annealing. The effects of composition and annealing on the optical dispersion parameters Eo and Ed were investigated using a single effective oscillator model. The calculated value of the average excitation energy Eo obeys the empirical relation (Eo = Eg/2) obtained from the single oscillator model.

Open access

M. Eshaghi Gordji and A. Fazeli

Abstract

In this paper, we investigate the stability and superstability of homomorphisms on C*-ternary algebras associated with the functional equation

Open access

Nouman Rafiq, Waqar A.A. Syed, Aulia Rifada, M. Asad Ghufran, Ijaz-Ur-Rehman Shah, Ahsan Ali and Wiqar Hussain Shah

Abstract

We report a simple approach for synthesizing monodispersed, crystalline and size-tunable tin sulfide nanoparticles for environment friendly next generation solar cell applications. Both SnS and SnS2 nanoparticles could be a potential nanomaterial for solar cells. The structural, morphological, thermal and optical properties were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), diffuse reflectance spectroscopy (DRS) and Fourier transform infrared spectroscopy (FT-IR). The XRD spectra revealed hexagonal and orthorhombic phases of SnS and SnS2 nanoparticles, respectively, where the grains size ranged from 11 nm to 30 nm. The weight percentage as a function of temperature was determined using TGA analysis. Functional groups were observed by FT-IR. The energy bandgap was determined as 1.41 eV showing usefulness of the nanoparticles in next generation environmental friendly solar energy applications.