Search Results

You are looking at 1 - 10 of 20 items for

  • Author: M. Adamczyk x
Clear All Modify Search
Open access

L. Kozielski and M. Adamczyk

Magnetic and Piezoelectric Properties of Magnetoelectric Laminate Transformer

Modern electronic devices development steady trends toward miniaturization and multifunctionality. The application of such advanced devices is often realised by superimposing two different effects. In recent years, there was great interest shown in multiferroic materials in form laminated heterostructures taking advantage of mentioned superposition. In these stacked structured electric and magnetic properties are strain coupled leading to the possibility of controlling either magnetic polarization by application of electric fields or electric polarization by means of applied magnetic fields.

In this paper novel construction of piezoelectric transformer was proposed with electric current induced magnetic field generation, without any coil or wires. This magnetoelectric laminate Piezoelectric Transformer from one layers of investigated piezoelectric material and second layer of commercial magnetostrictor was fabricated. This construction exhibits many interesting and unusual piezomagnetic properties and a demonstration of output voltage gain controlling via the application of magnetic field across the new heterostructure is presented.

Open access

D. Czekaj, A. Lisinńska-Czekaj and M. Adamczyk

Abstract

Goal of the present research was to study immittance properties of BiNbO4 ceramics fabricated by the solid state reaction route followed by pressureless sintering. Four sets of samples were examined, namely the one fabricated from the stoichiometric mixture of oxides, viz. Bi2O3 and Nb2O5 as well as the ones with an excess of 3%, 5% and 10% by mole of Bi2O3. The immittance properties were studied by impedance spectroscopy. Measurements were carried out within the frequency range ν =20Hz-1MHz and temperature range T =RT-550°C. The Kramers-Kronig data validation test was employed in the impedance data analysis. It was found that complex impedance first increases with an increase in Bi2O3 content and decreases for 10mol% excess of Bi2O3. Two relaxation phenomena manifested themselves at elevated temperature (T>267°C) within the measuring frequency range. The conductivity relaxation phenomenon (M″(ν) spectra) took place at higher frequency than the phenomenon with dominant resistive component (Z″(ν) spectra).

Open access

M. Adamczyk, L. Kozielski, M. Pawełczyk and M. Pilch

Dielectric and Mechanical Properties of BaBi2(Nb0.99V0.01)2O9 Ceramics

The BBN ceramics doped by vanadium have been broadly recognized by using nano indentation techniques and ultrasound velocity and measurements. The results affirm that the vanadium admixture significantly improved the mechanical quality of ceramics. Such a small dopant doesn't change the dielectric properties, but we obtain visible increasing of the dielectric permittivity value and shifts the temperature of the εmax to higer values. The vanadium admixture decreased the diffusion degree γ as well as influenced on the parameters characteristic for the relaxor behaviour. Our suggestion is that partial substitution of the smaller vanadium ions into the niobium sites renders for example ordering of the dipoles.

Open access

M. Adamczyk, M. Pilch and M. Pawełczyk

Abstract

In the hereby paper the implications of thermal modification of BaBi2Nb2O9 ceramics in high vacuum (5×10−11 bar) at a temperature equal of 1173K are widely discussed. The mentioned modification caused changes in the ions concentration (confirmed by EDS and XPS analysis) and as a consequence an influence on the value of the unit cell parameters as well as on the dielectric and relaxor properties of described ceramics. The obtained results of EDS and XPS analysis of the sample before and after thermal treatment revealed bismuth ions diffusion to the surface of the sample (which was expected) and an almost complete the lack of barium ions on the modified surface. The comparison of EDS and XPS analysis results, suggested that they penetrated the interior of the sample and embedded into the crystal structure in place of bismuth. The hypothesis is in good agreement with the results of X-ray diffraction – the volume of the unit cell had an insignificant increase. The changes in the ions concentration influenced, also in a distinct manner, the dielectric and relaxor properties as well as on the shape of temperature characteristic of thermal stimulated depolarization current observed in BBN ceramics.

Open access

M. Adamczyk, L. Kozielski, R. Zachariasz, M. Pawełczyk and L. Szymczak

Abstract

The research presented in this paper concerns BaBi2Nb2O9 (BBN) which is the member of the Aurivillius family and seems to be interesting from the point of view of its potential applications in storage media. Our investigations focused on temperature dependence crystal structure and mechanical properties of this ceramics as well as on the dielectric properties of samples. Correlation between positions of the maximum of the real part of electric permittivity and the behavior integral width of diffraction lines XRD versus temperature had been discussed based of the presence of polar nano-regions with orthorhombic distortion in macroscopic tetragonal matrix.

Open access

J. Adamczyk, M. Suliga, J.W. Pilarczyk and M. Burdek

In this work the influence of the die approach and bearing part of die on mechanical-technological properties of high carbon steel wires has been assessed. The drawing process of φ5.5 mm wires to the final wire of φ2.9 mm was conducted in 6 passes, by means of a multi-die drawing machine Koch type. The drawing speeds in the last passes were: 7 m/s. For wires drawn according to four variants the investigation of mechanical-technological properties has been carried out, in which yield strength, tensile strength, uniform and total elongation, reduction of area, the number of twists and the number of bends were determined. On the basis of numerical analyses wire drawing process, the influence of geometry of die on redundant strain and effective strain has been determined.

The investigations have shown the essential influence of geometry of die on mechanical-technological properties of high carbon steel wires. It has been shown that the increase of strength properties in wires drawn with high die angle is related to the occurrence in their bigger effective strain.

Open access

J. Marcisz, M. Adamczyk and B. Garbarz

Abstract

The paper presents results of examinations of properties and microstructure of maraging steel grade MS350 (18Ni350) produced by a novel heat treatment method called „short-time ageing“. It has been found that maraging steel after application of the short-time ageing achieves unique properties, in particular good combination of strength and impact toughness. After short-time ageing for time of heating up to 600 seconds at temperature of 550°C hardness in the range from 48 to 56 HRC, tensile strength ranging from 2000 to 2250 MPa, yield strength from 1930 to 2170 MPa and total elongation in the range 7-8% as well as notch impact toughness of 20 J/cm2 at temperature minus 40°C were obtained. Results of microstructure examination in transmission electron microscope (TEM) with application of high resolution technique (HRTEM) have shown presence of Ni3Mo nano-precipitates of orthorhombic crystallographic structure. Precipitates were characterized by rod-like shape and were homogenously distributed in martensitic matrix of steel with high density of dislocations. The average size of cross-section of precipitates was ca. 4 nm while length reached several dozen of nm.

Open access

B. Garbarz, M. Adamczyk and B. Niżnik-Harańczyk

Abstract

The aim of this work was to develop basic parameters of hot rolling and controlled cooling technology allowing to obtain the microlaminated (lamellar) microstructure in a lean-alloy structural steel containing 3÷5 wt % Al. Thermo-mechanical rolling tests of two experimental steels were carried out in a semi-industrial line comprising a one – stand reversing rolling mill. The final microstructure of the specimens subjected to rolling in the γ + α stability region characterised with the microlaminated morphology composed of lamellae of ferrite with thickness down to 1 μm or less and lamellae or grains of phases developed during transformation of the austenite. Determined parameters of the thermo-mechanical processing allowed to achieve very attractive mechanical properties of the experimental steels: tensile strength over 1.0 GPa and ductility level (total elongation) better than 15%.

Open access

K. Osińska, M. Adamczyk, J. Dzik, H. Bernard and D. Czekaj

Fabrication and Characterization of BST60/40//PVDF Ceramic-Polymer Composite

In this paper BST//PVDF composites with 0-3 connectivity were prepared from (Ba0.6Sr0.4)O3 (BST60/40) ceramic powder and polyvinylidene fluoride (PVDF) powder by a hot pressing method, for different concentration of the ceramic phase (cV). Morphology of BST//PVDF composites was observed by transmission electron microscopy and scanning electron microscopy, whereas the crystalline structure was studied by the X-ray diffraction method. The temperature dependence of dielectric permittivity of BST//PVDF composites was measured in the frequency range of ƒ=10kHz-1MHz. The split-post dielectric resonator (SPDR) was used for the measurements of the real and imaginary part of dielectric permittivity of BST//PVDF composites in the microwave frequency range of ƒ=3-10GHz. It was found, that the dielectric properties of the ceramic-polymer composite for cV >20% change significantly for both small (ƒ=10kHz-1MHz) and high (ƒ=3-10GHz) frequencies. The abrupt increase in permittivity may indicate an excess of the percolation threshold, so the ceramic-polymer composite for the concentrations of the active ceramic phase cV >20% cannot be indexed as composites with 0-3 connectivity.

Open access

A. Lisińska-Czekaj, D. Czekaj, K. Osińska and M. Adamczyk

Abstract

Goal of the present research was to investigate the influence of V2O5 additive on the structure and dielectric properties of BiNbO4 ceramics. To fabricate BiNbO4 ceramics with V2O5 added the solid state reaction route and pressureless sintering was utilized. Thus obtained ceramics was characterized in terms of its microstructure (SEM), chemical composition (EDS), phase composition and crystalline structure (X-ray phase and structural analysis, respectively). Also dielectric properties in both temperature and frequency domains were investigated. The impedance spectroscopy was utilized for dielectric characterization and the measurements of complex impedance were performed within the frequency range ν =10Hz-1MHz and temperature range T =RT-550°C. It was found that V2O5 additive changed slightly lattice parameters of BiNbO4 ceramics, decreased porosity of samples and revealled relaxation phenomena within the frequency ranges ν =102-103 Hz and ν =105-106 Hz at temperature T>285°C.