Search Results

You are looking at 1 - 5 of 5 items for

  • Author: M. Actis Grande x
Clear All Modify Search
Open access

R. Bidulský, J. Bidulská and M. Actis Grande

The paper focuses on the effect of both the aluminium alloy addition and microstructural inhomogeneties on the magnetic behaviour of soft magnetic materials tested at low frequencies. The IIPC material (base on the commercial Somaloy 1P powder) has been blended with different amounts of commercially aluminium alloy Alumix 321 (0, 5 and 10 wt %). Specimens with a different green density were obtained by pressing at a pressure in the range from 400 to 800 MPa. Different thermal treatments (in air or nitrogen at the maximum temperature of 500ºC for 30 min) were carried out on the evaluated systems. The microstructure investigation revealed that for materials with high aluminium alloy contents, pores are located nearby or around the aluminium alloy particles. The heat treatment regime resulted in a coarse-grained structure with a small number of inclusions within the grains and at the grain boundaries. The comparison of the results indicated that the magnetic properties were considerably dependent on the microstructural inhomogeneities.

Open access

R. Bidulský, J. Bidulská and M. Actis Grande

Abstract

The paper is focused on the role of the pressing pressure on the densification behaviour of PM aluminium alloys. Commercially aluminium based powders Al-Mg-Si-Cu-Fe and Al-Zn-Mg-Cu-Sn were used as materials to be investigated. The apparent density of the powder mixes was determined according to MPIF St. 04. A set of cylinder test specimen 55x10x10 mm3 was uniaxially pressed in a floating hardened steel die. Compaction pressures ranged from 50 MPa up to 700 MPa. Considering the densification of metal powders in uniaxial compaction, quantification of aluminium compaction behaviour was performed. The compressibility behaviour was evaluated, considering the effect on specimens, as well as on their microstructure. The development of compressibility values with pressing pressure enables to characterize the effect of particles geometry and matrix plasticity on the compaction process.

Open access

M. Śusniak, J. Karwan-Baczewska, J. Dutkiewicz, M. Actis Grande and M. Rosso

The paper is focused on the processing of aluminum alloy chips using powder metallurgy. Chips obtained from recycled AlSi5Cu2 alloy were ball milled with the addition of silicon carbide powder with an average size of 2μm. Mechanical alloying process was employed to obtain homogeneous composite powder. The effect of processing time (0 - 40h) on the homogeneity of the system was evaluated, as well as a detailed study of the microstructure of AlSi5Cu2 aluminum chips and SiC particles during MA was carried out. Addition of silicon carbide (10, 20wt%) to recycled aluminium chips and application of MA lead to fragmentation of the homogeneous composite powder down to particle size of about 3μm and spheroidization. The addition of hard SiC particles caused reinforcement and reduced the milling time. Higher content of silicon carbide and longer processing time allowed to obtain AlSi5Cu2/SiC powders with microhardness ∽500HV0,025. The results of MA were investigated with SEM, EDS, LOM, XRD and showed that relatively homogeneous distribution of SiC reinforcements in the matrix as well as grain refinement of aluminum solid solution down to 50nm can be obtained after 40h of processing.

Open access

M. Suśniak, J. Karwan-Baczewska, J. Dutkiewicz, M. Actis Grande and M. Rosso

Abstract

The present work investigates the possibility of using powder metallurgy processing for producing a metal matrix composite. Materials were prepared from AlSi5Cu2 chips with reinforcement of 10, 15, 20 wt. % silicon carbide. Aluminum alloy chips were milled with SiC powder in a high-energy ball mill by 40 hours. Mechanical alloying process lead to obtain an uniform distribution of hard SiC particles in the metallic matrix and refine the grain size. The consolidation of composite powders was performed by vacuum hot pressing at 450°C, under pressure of 600 MPa by 10 min. The results shows that the addition of SiC particles has a substantial influence on the microstructure and mechanical properties of composite powder as well as consolidated material. Hot pressing is an effective consolidation method which leads to obtain dense AlSi5Cu2/SiC composite with homogeneous structure and advanced mechanical properties.

Open access

J. Bidulská, T. Kvačkaj, I. Pokorný, R. Bidulský and M. Actis Grande

The main aim of this paper is to investigate, by means of comparison of experimental studies and mathematical models, the evolution of porosity as consequence of pressing, sintering and ECAPping an aluminium based powder (6xxx). After applying the compacting pressure, specimens were dewaxed in a ventilated furnace at 400º for 60 min. Sintering was carried out in a vacuum furnace at 610ºC for 30 min. The specimens were then ECAPed for 1 pass. The 2-dimensional quantitative image analysis was carried out by means of SEM and OM for the evaluation of the aforementioned characteristics. Results show the effect of processing parameters on the fracture/microstructure behaviour of the studied aluminium PM alloy. Quantitative image analysis, as well as fractographic interpretation and microstructure identification of weak sites in the studied aluminium PM alloy, provide a reliable and reproducible statistical procedure for the identification of the critical pore sizes.