Search Results

1 - 2 of 2 items

  • Author: Lucia Kunáková x
Clear All Modify Search

Abstract

The presence of water is one of the decisive factors of landscape’s natural potential. Water affects landscape’s predisposition for agricultural production, water supply available to the wide population and industry (the most important is the yield of water resources). Ponds, lakes and other water areas are zones of recreation and relaxation. Near sources mineral water, several world-famous spas were build. Waterways are also used to generate electricity. Geothermal underground water represents a very significant landscape potential. Determining hydrological potential of the area is important for the regional development. This paper assesses the landscape potential for water management regarding its surface waters in the micro-region Minčol. The micro-region was divided by a square grid, and for each square, we determined the appropriateness of this potential based on score points. The determining evaluation criteria were static reserves of surface water, waterway ranking and annual average discharge. First, we determined the significance (value) of individual criteria (classification characteristics), and then we calculated the values of individual classifiers, which were then multiplied by the value of the individual classifier intervals. The summary of points in each square belongs to a particular degree of suitability for water management based on surface waters. The potential was divided into five degrees (intervals): very unfavourable potential, unfavourable potential, moderately favourable potential, favourable potential and very favourable potential.

Abstract

The continuous monitoring of 222Rn activity concentration, CO2 concentration, and microclimatologic parameters (internal air temperature and relative humidity) in the Važecká Cave (Northern Slovakia) is being carried out at three monitoring stations, namely, Gallery, Lake Hall, and Entrance Hall. Radon activity concentration and CO2 concentration exhibited a clear annual variation. The daily average of radon concentration ranged 1300–27 700 Bq/m3 at the Lake Hall station and 3600–42 200 Bq/m3 at the Gallery station. Radon reached its maximum in the summer months, from June to September. The annual maximum of CO2 concentration is registered approximately one month later than radon maximum. The annual variation of radon and CO2 is controlled by the seasonal change of ventilation regime associated with the seasonal variation of the difference between the temperature measured inside the cave and the atmospheric temperature.