Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Lubos Hes x
Clear All Modify Search
Open access

Asif Mangat, Lubos Hes and Vladimir Bajzik

Abstract

Soft and clean surface of fabric without any floating fibers is one of the factors important for better marketing of clothing. The most common method for having such clean fabric surface is the removal of protruding (floating) fiber from the surface of the fabric. Many studies have proved that enzymatic treatment, commonly called biopolishing, removes the floating fibers from the surface of fabric and gives a smooth surface to the fabric. This study is an effort to assess and measure the impact of biopolishing of knitted fabric through objective and subjective evaluation on warm-cool feeling of fabric because of change in surface profile of the fabric. For testing purposes, 31 knitted fabric samples of various kinds were produced. Alambeta has been used for measuring thermal absorptivity values of fabric. Thermal absorptivity is an indicator of warm-cool feeling. For subjective evaluation, a group of 30 people were asked to give their opinion about warm-cool feeling. Both subjective and objective assessments confirm that biopolishing has a significant impact on warm-cool feeling. Fabric gives cool feeling after biopolishing. This study explores that clean surface will have higher thermal absorptivity and will give cool feeling when it will be touched by human skin.

Open access

Abdur Razzaque, Pavla Tesinova and Lubos Hes

Abstract

Waterproof breathable laminated fabrics have the special property that permits water vapour to pass through but protects by preventing the entrance of liquid water. Different characteristic properties of the layered constructions of these fabrics have good influence on their hydrostatic resistance and mechanical performance. This research study presents an experiment to enhance the hydrostatic resistance and tensile strength of four different types of hydrophobic membrane laminated waterproof fabrics by considering their breathability as well. For this purpose, water repellent coating based on C6-fluorocarbon resin along with polysiloxane hydrophobic softening agent was applied on these four different types of laminated fabrics using pad-dry-cure method. The coated fabrics were characterised by performing different experiments to evaluate the effect of coating on their hydrostatic resistance and mechanical property as well as on water vapour permeability and air permeability. From the test results and analysis of variance (ANOVA), it was found that hydrostatic resistance and tensile strength of the laminated fabrics were enhanced after coating along with proper water repellent property, whereas there were no significant changes in their water vapour permeability and air permeability.

Open access

Asif Elahi Mangat, Lubos Hes, Vladimir Bajzik and Adnan Mazari

Abstract

Thermal absorptivity is an indicator of warm and cool feeling of textile materials. An equation based on thermal absorptivity of polyester in solid form, porosity of a fabric, and relative contact area of human skin and fabric surface has been developed to characterize thermal absorptivity of fabric. For verification of suggested model, 15 knitted rib fabrics were produced using 100% polyester yarn and having different surface profile. ALAMBETA semiautomatic non-destructive instrument has been used for measuring the effective thermal absorptivity of knitted rib fabric. It was found that the suggested simple theoretical model exhibits significant agreement with the measured thermal absorptivity values of knitted rib fabric, which endorsed the approach applied.