Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Linda J. Young x
Clear All Modify Search
Open access

Linda J. Young, Michael Hyman and Barbara R. Rater

Abstract

The United States Department of Agriculture’s National Agricultural Statistics Service (NASS) has the responsibility of quantifying the nation’s agricultural production. Historically, it has focused on large production agriculture. With interest and activity increasing in urban areas, NASS has begun exploring how to better quantify urban agriculture. This segment of agriculture is particularly challenging to enumerate because the agricultural holdings tend to be small, diverse, widely dispersed, and more transient than the predominantly large farms in rural areas. In collaboration with the Multi-Agency Collaboration Environment (MACE), a new approach to list building was explored in a pilot study conducted in the City of Baltimore, Maryland. Using a big data approach, areas of potential agricultural activity were identified by gathering information (state and local permits, Facebook and twitter feeds, interest groups, etc.) via the web. A sample was drawn from the list, and an in-person survey was conducted to assess whether or not the identified areas had agricultural activity. The results of the pilot study are presented. Lessons learned from the study and next steps are discussed.

Open access

Hailin Sang, Kenneth K. Lopiano, Denise A. Abreu, Andrea C. Lamas, Pam Arroway and Linda J. Young

Abstract

The United States Department of Agriculture’s National Agricultural Statistics Service (NASS) conducts the June Agricultural Survey (JAS) annually. Substantial misclassification occurs during the prescreening process and from field-estimating farm status for nonresponse and inaccessible records, resulting in a biased estimate of the number of US farms from the JAS. Here, the Annual Land Utilization Survey (ALUS) is proposed as a follow-on survey to the JAS to adjust the estimates of the number of US farms and other important variables. A three-phase survey design-based estimator is developed for the JAS-ALUS with nonresponse adjustment for the second phase (ALUS). A design-unbiased estimator of the variance is provided in explicit form.