Search Results

1 - 3 of 3 items

  • Author: Libor Trško x
Clear All Modify Search
Phase Transformations in Nickel base Superalloy Inconel 718 during Cyclic Loading at High Temperature

Abstract

Nickel base superalloys are hi-tech materials intended for high temperature applications. This property owns a complex microstructure formed by matrix of Ni and variety of precipitates. The type, form and the amount of these phases significantly affect the resulting properties of these alloys. At sufficiently long exposure to high temperatures, the transformation phase can occur, which can lead to degradation of properties of these alloys. A cyclic plastic deformation can accelerate these changes, and they could occur at significantly lower temperatures or in shorter time of exposure. The aim of this study is to describe phase transformation, which can occur by a cyclic plastic deformation at high temperatures in nickel base superalloy Inconel 718.

Open access
Fatigue lifetime of 20MnV6 steel with holes manufactured by various methods

Abstract

In this paper, the authors publish their own experimental results of the examination of the different holes (milled, drilled and drilled + shot peened) on the fatigue lifetime of 20MnV6 steel. The experiments were carried out at low-frequency loading (f = 10 Hz, pulsating tension loading) in the region from N = 2×105 up to N = 2×106 cycles. The best fatigue properties were obtained in the parts with drilled + shot peened holes.

Open access
Safe choice of structural steels in a region of ultra-high number of load cycles

Abstract

In this paper the authors introduce their own selected experimental results in the field of the investigation of fatigue resistance of structural steels. The experiments were carried out on the nine structural steels including high strength steels, DOMEX 700MC, HARDOX 400, HARDOX 450, 100Cr6 (UTS from 446 MPa to 2462 MPa) at high-frequency cyclic loading (f = 20 kHz, T = 20 ± 5 °C, R = -1) in the region of number cycles ranged from N ≈ 2×106 to N ≈ 2×109 cycles of loading. The continuous decrease of fatigue strength in dependence on the number of loading cycles was observed with the average value of ratio σa2×109/σa2×106 = 0.69.

Open access