Search Results

1 - 2 of 2 items

  • Author: Leszek Mikulski x
Clear All Modify Search

Abstract

The article describes the gradient-iterative optimization method and outlines the method’s basic assumptions and illustrates its general use. The method’s implementation was illustrated based on a steel I-beam. The described calculation example concerns the optimization of the height of the web of a multi-span beam. The method enables finding an optimal solution with the use of simple and commonly available software.

To illustrate the effectiveness of the optimization method, multiple calculations were performed for beams with various spans and various load conditions.

Abstract

The paper concerns a strength optimization of continuous beams with variable cross-section. The continuous beams are subjected to a dead weight and a useful load, the six (seven) combinations of loads were analyzed. Optimal design problems in structural mechanics can by mathematically formulated as optimal control tasks. To solve the above formulated optimization problems, the minimum principle was applied. The paper is an introductory and survey paper of the treatment of realistically modelled optimal control problems from application in the structural mechanics. Especially those problems are considered, which include different types of constraints. The optimization problem is reduced to the solution of multipoint boundary value problems (MPBVP) composed of differential equations. Dimension of MPBVP is usually a large number, what produces numerical difficulties. Optimal control theory does not give much information about the control structure. The correctness of the assumed control structure can be checked after obtaining the solution of the boundary problem.