Search Results

1 - 9 of 9 items

  • Author: Lei Xu x
Clear All Modify Search


Long-distance safety of Marine search and rescue using drones can improve the searching speed. The current method is based on the long distance security classification of UAV.The degree of accuracy is low. A long-distance security modeling approach based on ArduinoMiniPro’s Marine search-and-rescue applying UAV is proposed. The method puts the fault tree analysis and relevant calculation for risk identification into use. The main factors affecting the safety of unmanned aerial vehicle (UAV) are long-distance searching and rescuing. The experimental results show that the proposed method can effectively build modeling for the long-distance safety of the Marine search and rescue UAV

Catalytic performances of cross-linking humic acids supported Pd/Ni bimetallic catalyst for heck reaction

The cross-linking humic acids (CL-HAs), epichlorohydrin as the cross-linking reagent and the supported Pd/Ni bimetallic catalysts (CL-HAs-Pd/Ni) were prepared and characterized by IR, AAS, XPS, TEM. The effects of reaction time, temperature, base, solvent and the amount of catalyst on the properties of the catalyst were studied. These catalysts could catalyze the Heck reaction of aryl halides and substituted aryl halides with acrylic acids or styrene successfully; the yields were all above 95%.


Textile yarns are subjected to numerous types of forces during knitting, usually leading to yarn damages, such as decrease in tensile, bending, shearing, and surface properties, which are closely related to different yarn properties, knitted structures/actions, and machine settings. This article comprehensively evaluated yarn damages in the computerized flat knitting process. Five different commercially available and commonly used yarns including cotton, wool, polyester, acrylic, and viscose were selected as raw materials, and the tensile, bending, shear, and frictional properties were investigated and compared before knitting and after being unraveled from plain- and rib-knitted fabrics, respectively. The results show that knitting actions/structures exhibit different damage extents for all different raw materials. It has been observed that the modulus is declined by 3–30% for bending, 2–10% for tensile, and 8–80% for shearing due to flat knitting action, respectively. The frictional coefficient of yarns also increased from 6 to 23%. As compared to yarn before knitting, the yarns unroved from plain and rib structures have been damaged to a great extent as a result of the loss of mechanical properties. The results are completely in agreement with the statistical analysis that clearly represents the significant loss in yarn properties during the knitting process. The microscopic analysis of the yarns clearly illustrates the effect of knitting action on yarn surface and mechanical properties. For yarn’s cross-sectional shearing properties testing, this article self-designed an innovative “Yarn Shear Testing Device.” The methodology and results are of great importance for improving the quality of knitted products, evaluating knitting yarns’ knittability, and in the development of high-performance technical textiles.


Six new species of Dolichopeza Curtis, 1825, subgenus Nesopeza Alexander, 1914, are described and illustrated: D. (N.) incisuraloides sp. nov., D. (N.) jiangjinensis sp. nov., D. (N.) lipingensis sp. nov., D. (N.) medionodosa sp. nov., D. (N.) multidentata sp. nov., and D. (N.) setilobatoides sp. nov. Dolichipeza (N.) incisuralis Alexander, 1940 is redescribed and illustrated based on additional morphological characters. The female internal reproductive systems of D. (N.) incisuraloides sp. nov. and D. (N.) multidentata sp. nov. are documented. A key is provided to separate all known species of Nesopeza from China.


Mixed evergreen-deciduous broadleaved forest is the transitional type of evergreen broadleaved forest and deciduous broadleaved forest, and plays a unique eco-hydrologic role in terrestrial ecosystem. We investigated the spatio-temporal patterns of throughfall volume of the forest type in Shennongjia, central China. The results indicated that throughfall represented 84.8% of gross rainfall in the forest. The mean CV (coefficient of variation) of throughfall was 27.27%. Inter-event variability in stand-scale throughfall generation can be substantially altered due to changes in rainfall characteristics, throughfall CV decreased with increasing rainfall amount and intensity, and reached a quasi-constant level when rainfall amount reached 25 mm or rainfall intensity reached 2 mm h−1. During the leafed period, the spatial pattern of throughfall was highly temporal stable, which may result in spatial heterogeneity of soil moisture.


Due to the viscous shear stress, there is an obvious error between the real flow rate and the rotameter indication for measuring viscous fluid medium. At 50 cSt the maximum error of DN40 orifice rotameter is up to 35 %. The fluid viscosity effects on the orifice rotameter are investigated using experimental and theoretical models. Wall jet and concentric annulus laminar theories were adapted to study the influence of viscosity. And a new formula is obtained for calculating the flow rate of viscous fluid. The experimental data were analyzed and compared with the calculated results. At high viscosity the maximum theoretical results error is 6.3 %, indicating that the proposed measurement model has very good applicability.


For estimation of root-zone moisture content from EO-1/Hyperion imagery, surface soil moisture was first predicted by hyperspectral reflectance data using partial least square regression (PLSR) analysis. The textures of more than 300 soil samples extracted from a 900 m × 900 m field site located within the Hetao Irrigation District in China were used to parameterize the HYDRUS-1D numerical model. The study area was spatially discretized into 18,000 compartments (30 m × 30 m × 0.02 m), and Monte Carlo simulations were applied to generate 2000 different soil-particle size distributions for each compartment. Soil hydraulic properties for each realization were determined by application of artificial neural network analysis and used to parameterize HYDRUS-1D to simulate averaged soil-moisture contents within the root zone (0-40 cm) and surface (approximately 0-4 cm). Then the link between surface moisture and root zone was established by use of linear regression analysis, resulting in R and RMSE of 0.38 and 0.03, respectively. Kriging and co-kriging with observed surface moisture, and co-kriging with surface moisture obtained from Hyperion imagery were also used to estimate root-zone moisture. Results indicated that PLSR is a powerful tool for soil moisture estimation from hyperspectral data. Furthermore, co-kriging with observed surface moisture had the highest R (0.41) and linear regression model, and HYDRUS Monte Carlo simulations had a lowest RMSE (0.03) among the four methods. In regions that have similar climatic and soil conditions to our study area, a linear regression model with HYDRUS Monte Carlo simulations is a practical method for root-zone moisture estimation before sowing and it can be easily coupled with remote sensing technology.



The aim of the study was to evaluate short-term safety and efficacy of simultaneous modulated accelerated radiation therapy (SMART) delivered via helical tomotherapy in patients with nasopharyngeal carcinoma (NPC).


Between August 2011 and September 2013, 132 newly diagnosed NPC patients were enrolled for a prospective phase II study. The prescription doses delivered to the gross tumor volume (pGTVnx) and positive lymph nodes (pGTVnd), the high risk planning target volume (PTV1), and the low risk planning target volume (PTV2), were 67.5 Gy (2.25 Gy/F), 60 Gy (2.0 Gy/F), and 54 Gy (1.8 Gy/F), in 30 fractions, respectively. Acute toxicities were evaluated according to the established RTOG/EORTC criteria. This group of patients was compared with the 190 patients in the retrospective P70 study, who were treated between September 2004 and August 2009 with helical tomotherapy, with a dose of 70-74 Gy/33F/6.5W delivered to pGTVnx and pGTVnd.


The median follow-up was 23.7 (12–38) months. Acute radiation related side-effects were mainly problems graded as 1 or 2. Only a small number of patients suffered from grade 4 leucopenia (4.5%) or thrombocytopenia (2.3%). The local relapse-free survival (LRFS), nodal relapse-free survival (NRFS), local-nodal relapse-free survival (LNRFS), distant metastasis-free survival (DMFS) and overall survival (OS) were 96.7%, 95.5%, 92.2%, 92.7% and 93.2%, at 2 years, respectively, with no significant difference compared with the P70 study.


Smart delivered via the helical tomotherapy technique appears to be associated with an acceptable acute toxicity profile and favorable short-term outcomes for patients with NPC. Long-term toxicities and patient outcomes are under investigation.


Objective To investigate the effects of individualised treatment with peginterferon alpha-2a (40 kD) plus ribavirin in Chinese patients with CHC.

Methods Total of 297 consecutive Chinese patients were enrolled, including 250 naïve cases and 47 cases who were previously treated. Treatment duration was determined according to viral genotypes, prior treatment history and viral responses at week 4, 12 and 24.

Results Totally, 235 patients (79.1%) completed treatment and 186 (87.3%) achieved SVR. And 219 out of 289 (75.8%) patients achieved HCV RNA negative at week 4 (RVR) and 259 of 276 (93.8%) at week 12. Among the 164 patients with RVR who completed follow-up, 158 (96.3%) achieved SVR. Patients with RVR had lower baseline viral loads than patients without RVR (P = 0.034). The positive predictive value (PPV) of RVR for SVR was 90.7% (OR 2.10 vs. non-RVR, 95% CI: 0.50 - 8.7). Similar outcomes were observed among patients with HCV undetectable at week 12.

Conclusions Complete viral suppression by week 4 is associated with a high rate of treatment success in treatment naïve and experienced patients receiving individualized CHC therapy.