Search Results

1 - 3 of 3 items

  • Author: Ladislav Morovič x
Clear All Modify Search
The Influence of Internal Structures in Fused Deposition Modeling Method on Dimensional Accuracy of Components

Abstract

The paper investigates the influence of infill (internal structures of components) in the Fused Deposition Modeling (FDM) method on dimensional and geometrical accuracy of components. The components in this case were real models of human mandible, which were obtained by Computed Tomography (CT) mostly used in medical applications. In the production phase, the device used for manufacturing, was a 3D printer Zortrax M200 based on the FDM technology. In the second phase, the mandibles made by the printer, were digitized using optical scanning device of GOM ATOS Triple Scan II. They were subsequently evaluated in the final phase. The practical part of this article describes the procedure of jaw model modification, the production of components using a 3D printer, the procedure of digitization of printed parts by optical scanning device and the procedure of comparison. The outcome of this article is a comparative analysis of individual printed parts, containing tables with mean deviations for individual printed parts, as well as tables for groups of printed parts with the same infill parameter.

Open access
3D Digitization and Additive Manufacturing Technologies in Medicine

Abstract

The paper discusses the use of 3D digitization and additive manufacturing technologies in the field of medicine. In addition, applications of the use of 3D digitization and additive manufacturing methods are described, focusing on the design and manufacture of individual medical aids. Subsequently, the process of designing and manufacturing of orthopedic aids using these technologies is described and the advantages of introducing the given technologies into the design and manufacturing processes in the medicine sector are presented.

Open access
Environment and Safety Impacts of Additive Manufacturing: A Review

Abstract

The paper is focused on additive manufacturing (AM) which is the process of producing objects from a three-dimensional (3D) model by joining materials layer by layer, as opposed to the subtractive manufacturing methodologies [1], directly from raw material in powder, liquid, sheet, or a filament form without the need for moulds, tools, or dies. The article demonstrates potential environmental implications of additive manufacturing related to the key issues including energy use, occupational health, waste and lifecycle impact. AM provides a cost-effective and time-efficient way to fabricating products with complicated geometries, advanced material properties and functionality. Based on this review, we identified that additive manufacturing will have a significant societal impact in the near future. A critical technical review of the promises and potential issues of AM is beneficial for advancing its further development.

Open access