Search Results

1 - 4 of 4 items

  • Author: Kazuhiro Ozawa x
Clear All Modify Search

Abstract

This paper deals with two-factor experiments with split units. The whole plot treatments occur in a repeated Latin square, modified Latin square or Youden square, while subplot treatments occur in a block design within the whole plots. The statistical properties of the considered designs are examined. Special attention is paid to the case where one of the treatments is an individual control or an individual standard treatment. In addition, we give a brief overview of work on the design of experiments using the considered designs, as well as possible arrangements of controls in the experiments.

Summary

We consider a new method of constructing non-orthogonal (incomplete) split-split-plot designs (SSPDs) for three (A, B, C) factor experiments. The final design is generated by some resolvable incomplete block design (for the factor A) and by square lattice designs for factors B and C using a modified Kronecker product of those designs (incidence matrices). Statistical properties of the constructed designs are investigated under a randomized-derived linear model. This model is strictly connected with a four-step randomization of units (blocks, whole plots, subplots, sub-subplots inside each block). The final SSPD has orthogonal block structure (OBS) and satisfies the general balance (GB) property. The statistical analysis of experiments performed in the SSPD is based on the analysis of variance often used for multistratum experiments. We characterize the SSPD with respect to the stratum efficiency factors for the basic estimable treatment contrasts. The structures of the vectors defining treatment contrasts are also given.

Abstract

We consider an incomplete split-plot design (ISPD) with two factors generated by the semi-Kronecker product of two α-resolvable designs. We use an α-resolvable design for the whole plot treatments and an affine α-resolvable design for the subplot treatments. We characterize the ISPDs with respect to the general balance property, and we give the stratum efficiency factors for the ISPDs.

Summary

We construct an incomplete split-block design (ISBD) by the semi- Kronecker product of two affine α-resolvable designs for row and column treatments. We characterize such ISBDs with respect to the general balance property and we give the stratum efficiency factors for the ISBDs.