Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Kazimierz Furtak x
Clear All Modify Search
Open access

Kazimierz Flaga and Kazimierz Furtak

Abstract

Steel-concrete composite structures have been used in bridge engineering from decades. This is due to rational utilisation of the strength properties of the two materials. At the same time, the reinforced concrete (or prestressed) deck slab is more favourable than the orthotropic steel plate used in steel bridges (higher mass, better vibration damping, longer life).

The most commonly found in practice are composite girder bridges, particularly in highway bridges of small and medium spans, but the spans may reach over 200 m. In larger spans steel truss girders are applied. Bridge composite structures are also employed in cable-stayed bridge decks of the main girder spans of the order of 600, 800 m. The aim of the article is to present the cionstruction process and strength analysis problems concerning of this type of structures. Much attention is paid to the design and calculation of the shear connectors characteristic for the discussed objects. The authors focused mainly on the issues of single composite structures. The effect of assembly states on the stresses and strains in composite members are highlighted. A separate part of problems is devoted to the influence of rheological factors, i.e. concrete shrinkage and creep, as well as thermal factors on the stresses and strains and redistribution of internal forces.

Open access

Kazimierz Flaga and Kazimierz Furtak

Abstract

The aim of the article [1] was to discuss the application of steel-concrete composite structures in bridge engineering in the aspect of structural design, analysis and execution. It was pointed out that the concept of steel-concrete structural composition is far from exhausted and new solutions interesting from the engineering, scientific and aesthetic points of view of are constantly emerging. These latest trends are presented against the background of the solutions executed in Poland and abroad. Particular attention is focused on structures of double composition and steel-concrete structures. Concrete filled steel tubular (CFST) structures are highlighted.

Open access

Piotr Dybeł and Kazimierz Furtak

Abstract

The paper presents the results of experimental investigations performed by the authors on the casting position factor. It was proved that at the height of reinforced concrete elements there are different bond conditions. Moreover, the bond depends on concrete mechanical properties, element height as well as concrete mix composition and consistency. The experiments also showed the advisability of determining the casting position factor separately for bars from normal concrete and those from high–performance concrete (HPC). The analysis of investigation results has shown that “good” bond conditions are a relative concept and depend on, among other things, element height. The higher the element the better the concrete to lower bars bond. Consequently, elements of considerable height (higher than 600 mm) demonstrate a bigger difference between concrete to upper bars bond and concrete to lower bars bond.