Search Results

You are looking at 1 - 5 of 5 items for

  • Author: Kazimierz Duzinkiewicz x
Clear All Modify Search
Open access

Karol Kulkowski, Anna Kobylarz, Michał Grochowski and Kazimierz Duzinkiewicz

Abstract

The paper presents the dynamic multivariable model of Nuclear Power Plant steam turbine. Nature of the processes occurring in a steam turbine causes a task of modeling it very difficult, especially when this model is intended to be used for on-line optimal process control (model based) over wide range of operating conditions caused by changing power demand. Particular property of developed model is that it enables calculations evaluated directly from the input to the output, including pressure drop at the stages. As the input, model takes opening degree of valve and steam properties: mass flow and pressure. Moreover, it allows access to many internal variables (besides input and output) describing processes within the turbine. The model is compared with the static steam turbine model and then verified by using archive data gained from researches within previous Polish Nuclear Power Programme. Presented case study concerns the WWER-440 steam turbine that was supposed to be used in Żarnowiec. Simulation carried out shows compliance of the static and dynamic models with the benchmark data, in a steady state conditions. Dynamic model also shows good behavior over the transient conditions.

Open access

Bartosz Puchalski, Kazimierz Duzinkiewicz and Tomasz Rutkowski

Abstract

In the paper, analysis of multi-region fuzzy logic controller with local PID controllers for steam generator of pressurized water reactor (PWR) working in wide range of thermal power changes is presented. The U-tube steam generator has a nonlinear dynamics depending on thermal power transferred from coolant of the primary loop of the PWR plant. Control of water level in the steam generator conducted by a traditional PID controller which is designed for nominal power level of the nuclear reactor operates insufficiently well in wide range of operational conditions, especially at the low thermal power level. Thus the steam generator is often controlled manually by operators. Incorrect water level in the steam generator may lead to accidental shutdown of the nuclear reactor and consequently financial losses. In the paper a comparison of proposed multi region fuzzy logic controller and traditional PID controllers designed only for nominal condition is presented. The gains of the local PID controllers have been derived by solving appropriate optimization tasks with the cost function in a form of integrated squared error (ISE) criterion. In both cases, a model of steam generator which is readily available in literature was used for control algorithms synthesis purposes. The proposed multi-region fuzzy logic controller and traditional PID controller were subjected to broad-based simulation tests in rapid prototyping software - Matlab/Simulink. These tests proved the advantage of multi-region fuzzy logic controller with local PID controllers over its traditional counterpart.

Open access

Adam Nowicki, Michał Grochowski and Kazimierz Duzinkiewicz

Kernel Principal Component Analysis (KPCA), an example of machine learning, can be considered a non-linear extension of the PCA method. While various applications of KPCA are known, this paper explores the possibility to use it for building a data-driven model of a non-linear system-the water distribution system of the Chojnice town (Poland). This model is utilised for fault detection with the emphasis on water leakage detection. A systematic description of the system’s framework is followed by evaluation of its performance. Simulations prove that the presented approach is both flexible and efficient.

Open access

Mariusz Czapliński, Paweł Sokólski, Kazimierz Duzinkiewicz, Robert Piotrowski and Tomasz Rutkowski

Abstract

The pressurizer water level control system in nuclear power plant with pressurized water reactor (PWR) is responsible for coolant mass balance. The main control goal is to stabilize the water level at a reference value and to suppress the effect of time-varying disturbances (e.g. coolant leakage in primary circuit pipeline system). In the process of PWR power plant operation incorrect water level may disturb pressure control or may cause damage to electric heaters which could threaten plant security and stability. In modern reactors standard PID controllers are used to control water level in a pressurizer. This paper describes the performance of state feedback integral controller (SFIC) with reduced-order Luenberger state observer designed for water level control in a pressurizer and compares it to the standard PID controller. All steps from modeling of a pressurizer through control design to implementation and simulation testing in Matlab/Simulink environment are detailed in the paper.

Open access

Tomasz Karol Nowak, Kazimierz Duzinkiewicz and Robert Piotrowski

Abstract

This paper presents results concerning solutions of the fractional neutron point kinetics model for a nuclear reactor. Proposed model consists of a bilinear system of fractional and ordinary differential equations. Three methods to solve the model are presented and compared. The first one entails application of discrete Grünwald-Letnikov definition of the fractional derivative in the model. Second involves building an analog scheme in the FOMCON Toolbox in MATLAB environment. Third is the method proposed by Edwards. The impact of selected parameters on the model’s response was examined. The results for typical input were discussed and compared.