Search Results

You are looking at 1 - 1 of 1 items for

  • Author: Katherine Rebecca Benson x
Clear All Modify Search
Open access

Noora Al-Hammadi, Palmira Caparrotti, Carole Naim, Jillian Hayes, Katherine Rebecca Benson, Ana Vasic, Hissa Al-Abdulla, Rabih Hammoud, Saju Divakar and Primoz Petric



During radiotherapy of left-sided breast cancer, parts of the heart are irradiated, which may lead to late toxicity. We report on the experience of single institution with cardiac-sparing radiotherapy using voluntary deep inspiration breath hold (V-DIBH) and compare its dosimetric outcome with free breathing (FB) technique.

Patients and methods

Left-sided breast cancer patients, treated at our department with postoperative radiotherapy of breast/chest wall +/– regional lymph nodes between May 2015 and January 2017, were considered for inclusion. FB-computed tomography (CT) was obtained and dose-planning performed. Cases with cardiac V25Gy ≥ 5% or risk factors for heart disease were coached for V-DIBH. Compliant patients were included. They underwent additional CT in V-DIBH for planning, followed by V-DIBH radiotherapy. Dose volume histogram parameters for heart, lung and optimized planning target volume (OPTV) were compared between FB and BH. Treatment setup shifts and systematic and random errors for V-DIBH technique were compared with FB historic control.


Sixty-three patients were considered for V-DIBH. Nine (14.3%) were non-compliant at coaching, leaving 54 cases for analysis. When compared with FB, V-DIBH resulted in a significant reduction of mean cardiac dose from 6.1 +/– 2.5 to 3.2 +/– 1.4 Gy (p < 0.001), maximum cardiac dose from 51.1 +/– 1.4 to 48.5 +/– 6.8 Gy (p = 0.005) and cardiac V25Gy from 8.5 +/– 4.2 to 3.2 +/– 2.5% (p < 0.001). Heart volumes receiving low (10–20 Gy) and high (30–50 Gy) doses were also significantly reduced. Mean dose to the left anterior coronary artery was 23.0 (+/– 6.7) Gy and 14.8 (+/– 7.6) Gy on FB and V-DIBH, respectively (p < 0.001). Differences between FB- and V-DIBH-derived mean lung dose (11.3 +/– 3.2 vs. 10.6 +/– 2.6 Gy), lung V20Gy (20.5 +/– 7 vs. 19.5 +/– 5.1 Gy) and V95% for the OPTV (95.6 +/– 4.1 vs. 95.2 +/– 6.3%) were non-significant. V-DIBH-derived mean shifts for initial patient setup were ≤ 2.7 mm. Random and systematic errors were ≤ 2.1 mm. These results did not differ significantly from historic FB controls.


When compared with FB, V-DIBH demonstrated high setup accuracy and enabled significant reduction of cardiac doses without compromising the target volume coverage. Differences in lung doses were non-significant.