Search Results

1 - 6 of 6 items

  • Author: Katarzyna Łuszczyńska x
Clear All Modify Search

Abstract

The aim of the study was to investigate how the emission of pollutants to the atmosphere from the late 19th century until modern times has been recorded in rings of silver fir trees growing in southern Poland. Samples were collected from 24 firs growing in the Beskid Niski Mountains (Western Carpathians). Using a Pressler borer, a single core was collected from each tree. Within the samples, tree-ring widths were measured. On this basis, reductions of tree-ring widths were calculated and subsequently divided into three classes according to their severity. Study results indicate that growth reductions at the site studied were influenced by the pollution emitted from the now-defunct Central Industrial Region, which developed most rapidly from 1920 to 1940, and began to decline after World War II. These emissions were probably responsible for reductions in the trees sampled in the years 1928–1947. On the other hand, reductions of tree-ring widths dating from 1951 to 1989 were caused by the post-war development of heavy industry throughout Poland, and in particular in the Upper Silesian Industrial Region, which developed at its most rapid rate from 1960 to 1990. The results obtained demonstrate that reductions of tree-ring widths in the silver firs studied are related to industrial air pollution in the 20th century. As industrial production declined and environmentally friendly technologies were introduced in the early 1990s, air pollution levels decreased and an increase in tree-ring widths followed in the silver firs studied. Further reductions of tree-ring widths have been observed in recent years (since 2009), which may be caused by air pollution due to low-stack emissions from domestic boilers. The analysis conducted demonstrates that a reduction in tree-ring widths in silver fir is a sensitive bioindicator of air pollution.

Abstract

We applied dendrochronological methods for dating landslide activity in the study area (3.75 km2), on the slopes of Sucha Mountain (1040 m a.s.l.), in the Beskid Żywiecki Mountains, in the Western Carpathians. 46 sampling sites were distributed throughout the study area. At each site we sampled 1-3 coniferous trees: Norway spruces (Picea abies Karst.) and/or silver firs (Abies alba Mill.). From each tree 2 cores were sampled: one from the upslope and the other from the downslope side of the stem. Based on tree-ring widths measured for opposite sides of stems we have calculated eccentricity index values and dated past landslide events. Mean frequency of landslides was obtained for each sampling site. Finally, the data was interpolated into a map of landslide activity. Inverse Distance Weighting (IDW) interpolation has been applied. For most of the study area we found medium (19 sites) and low (23 sites) levels of landslide activity. The highest level of activity was recorded for the largest landslide slope and for the one small landslide. The study conducted on Sucha Mountain has shown that dendrochronology can be an effective method for analysing landslide activity and may be useful in further studies, including those for landslide hazard and risk assessments.

Abstract

The intense pace of construction work means that technical materials contain so-called technological moisture, which enables the development of biodeteriogenic organisms on building partitions. This article presents the mycological analysis of two buildings in Zielona Góra, whose building partitions were affected by colour deposits. In the first building (a block of flats in the shell and core condition) 7 species of moulds were determined, of which the dominant one was Cladosporium herbarum. In the second building (public utilities building) changes on the walls appeared just after refurbishment and were caused by a species of mould called Strachybotrys chartarum which is hazardous to human and animal life.

Abstract

Aspergilli constitute a serious risk to the health of the inhabitants of infested rooms. Mycological analysis conducted in buildings infected with moulds in the area of the Lubuskie province (Poland) demonstrated the presence of 9 species of Aspergillus moulds: A. carbonarius A. clavatus, A. flavus, A. fumigatus, A. niger, A. ochraceus, A. terreus, A ustus and A. versicolor. The highest frequency (4 - frequently) was observed in the case of A. versicolor, while frequency 3 (fairly frequently) was characteristic of such species as A. flavus and A. niger. A. ustus was encountered with frequency 2 (individually), while frequency 1 (sporadically) referred to four species: A. carbonarius, A. clavatus, A. fumigatus and A. terreus. Because Aspergillus versicolor occurs with the highest frequency in buildings, and as a consequence of this, synthesizes toxic and carcinogenic sterigmatocystin (ST), it constitutes the greatest risk to the inhabitants of the infested premises. All species of Aspergillus present on building partitions are able to synthesise mycotoxins, are pathogens and may cause allergies.

Abstract

Most landslide hazard maps are developed on the basis of an area’s susceptibility to a landslide occurrence, but dendrochronological techniques allows one to develop maps based on past landslide activity. The aim of the study was to use dendrochronological techniques to develop a landslide hazard map for a large area, covering 3.75 km2. We collected cores from 131 trees growing on 46 sampling sites, measured tree-ring width, and dated growth eccentricity events (which occur when tree rings of different widths are formed on opposite sides of a trunk), recording the landslide events which had occurred over the previous several dozen years. Then, the number of landslide events per decade was calculated at every sampling site. We interpolated the values obtained, added layers with houses and roads, and developed a landslide hazard map. The map highlights areas which are potentially safe for existing buildings, roads and future development. The main advantage of a landslide hazard map developed on the basis of dendrochronological data is the possibility of acquiring long series of data on landslide activity over large areas at a relatively low cost. The main disadvantage is that the results obtained relate to the measurement of anatomical changes and the macroscopic characteristics of the ring structure occurring in the wood of tilted trees, and these factors merely provide indirect information about the time of the landslide event occurrence.

Abstract

Channels of Czadeczka and Krężelka rivers (Beskidzie Śląski Mts) are at present subjected to regulation because of which these rivers have lost their natural character, partially still preserved. The reasons for the river regulation have been analysed. Using archival maps, the buildings erection time has been analysed on valley floors, in the immediate vicinity of river channels for the period 1790-2012. Next, the distribution of existing buildings has been compared with hydraulic structures in the channels developed in order to regulate the Czadeczka and the Krężelka reaches, such as: concrete and stone embankments reinforcing the channel banks, check dams on channel bottoms. Results indicate a strong correlation between the number of buildings on valley floors in the 20th century and channel regulation. The mechanism of destroying rare, preserved natural river reaches is based on irrational permission allowing construction of buildings in areas threatened by floods and lateral erosion of rivers. Consequently, the inhabitants, in fear of floods and erosion of land or house foundations, seek river regulation that gives them a false sense of security. Natural river reaches are destroyed though efficient protection against floods and lateral erosion is still not provided and the range of possible losses increases even more due to continued building erection.