Search Results

1 - 10 of 10 items

  • Author: Katarína Drábiková x
Clear All Modify Search

Effects of reactive oxygen species and neutrophils on endothelium-dependent relaxation of rat thoracic aorta

Reactive oxygen species (ROS) are produced in different metabolic processes including the respiratory burst of neutrophils accompanying local inflammation. The aim of this study was to analyze the effects of N-formyl-methionyl-leucyl-phenylalanine (FMLP)-activated neutrophils, isolated from the guinea pig peritoneal cavity, on isolated rings of a large (conduit) artery, the rat thoracic aorta. FMLP-activated neutrophils enhanced the basal tension increased by α1-adrenergic stimulation. In phenylephrine-precontracted aortae, they elicited marked contraction, while in noradrenaline-precontracted rat aortal rings they caused a biphasic response (contraction-relaxation). To eliminate interaction of activated neutrophils with catecholamines, in the subsequent experiments the basal tension was increased by KCl-induced depolarization. Activated neutrophils evoked a low-amplitude biphasic response (relaxationcontraction) on the KCl-induced contraction. Not only the acetylcholine- and A23187-induced relaxations but also the catalase sensitive hydrogen peroxide (H2O2) elicited contractions were endothelium-dependent. Even though the acetylcholine-induced relaxation was changed by activated neutrophils and by the ROS studied, their effects differed significantly, yet none of them did eliminate fully the endothelium-dependent acetylcholine relaxation. The effect of activated neutrophils resembled the effect of superoxide anion radical (O2 •-) produced by xanthine/xanthine oxidase (X/XO) and differed from the inhibitory effects of Fe2SO4/H2O2-produced hydroxyl radical (OH) and H2O2. Thus O2 •- produced either by activated neutrophils or X/XO affected much less the endothelium-dependent acetylcholine-activated relaxation mechanisms than did OH and H2O2. In the large (conduit) artery, the effects of activated neutrophils and various ROS (O2 •-, OH and H2O2) seem to be more dependent on muscle tension than on endothelial mechanisms.


The study provides new information on the effect of natural polyphenols (derivatives of stilbene - resveratrol, pterostilbene, pinosylvin and piceatannol and derivatives of ferulic acid - curcumin, N-feruloylserotonin) on the activity of human neutrophils in influencing oxidative burst. All the polyphenols tested were found to reduce markedly the production of reactive oxygen species released by human neutrophils on extra-and intracellular levels as well as in cell free system. Moreover, pinosylvin, curcumin, N-feruloylserotonin and resveratrol decreased protein kinase C activity involved in neutrophil signalling and reactive oxygen species production. Our results suggest that due to their anti-neutrophil activity, the polyphenols tested might be attractive candidates in therapeutic development.

Pharmacological regulation of neutrophil activity and apoptosis

Novel strategies of antiinflammatory therapy are based upon pharmacological agents capable to enhance the resolution - i.e. the termination of the beneficial inflammation before it may turn into an adverse chronic stage. In contrast to the current therapy, which antagonises the formation of proinflammatory mediators, the "proresolving" therapy promotes natural antiinflammatory processes. It is likely that several drugs and phytochemicals would act in this way, but this point has not been investigated and thus might be totally overlooked. In this paper, effects of curcumin (diferuloylmethane) were analysed, considering the ability of this natural compound to affect resolution of inflammation through modulation of its important inputs - activity and apoptosis of neutrophils. The presented data indicate that, besides its well-known ability to suppress mechanisms engaged at the onset and progression of inflammation, curcumin could support resolution of inflammation through decreased activity and enhanced apoptosis of neutrophils. This substance decreased the formation of oxidants in neutrophils, both under in vitro conditions and after oral administration to arthritic rats. Moreover, curcumin accelerated spontaneous apoptosis of neutrophils, as indicated by increased externalisation of phosphatidylserine, by intercalation of propidium iodide and by enhanced activity of the executioner caspase-3.


Chronic inflammatory diseases, e.g. rheumatoid arthritis or cystic fibrosis, are characterised by neutrophil infiltration in inflamed tissues. Dysregulated neutrophil death may contribute to the pathogenesis of diseases where neutrophils play a role. Stilbene derivatives are reported to activate apoptosis in different cell lines. Neutrophils from healthy volunteers were incubated in vitro with resveratrol, pterostilbene, pinosylvin or piceatannol (1-100 μmol/l), and cytotoxicity and apoptosis were measured by luminometry and flow cytometry, respectively. Enhancement and/or inhibition of human recombinant caspase-3 enzyme activity were measured by luminometry. None of the stilbene derivatives tested increased ATP liberation from human neutrophils, thus showing no direct cytotoxicity effect. Resveratrol and piceatannol (100 μmol/l) treated neutrophils had a higher rate of apoptosis compared to non-treated cells. Pterostilbene and pinosylvin (1 μmol/l), yet not resveratrol or piceatannol, increased the activity of caspase-3. However in the concentration of 100 μmol/l, all stilbene derivatives tested inhibited caspase-3 activity. Their effects on human neutrophil apoptosis differed according to the structure of the molecule. Additional studies are required to get insight into the mechanisms involved in the effects of the substances tested on neutrophil viability.


Prolonged or excessive formation and liberation of cytotoxic substances from neutrophils intensifies inflammation and the risk of tissue damage. From this perspective, administration of substances which are able to reduce activity of neutrophils and to enhance apoptosis of these cells may improve the therapy of pathological states connected with persistent inflammation. In this short review, neutrophil oxidative burst and apoptosis are presented as potential targets for pharmacological intervention. Effects of natural polyphenols (resveratrol, pterostilbene, pinosylvin, piceatannol, curcumin, N-feruloylserotonin) are summarised, considering the ability of these compounds to affect inflammation and particularly neutrophil activity. The intended neutrophil inhibition is introduced as a part of a new strategy for pharmacological modulation of chronic inflammatory processes, focused on supporting innate antiinflammatory mechanisms and enhancing resolution of inflammation.

The effects of dithiaden on nitric oxide production by RAW 264.7 cells

Asreported in our previous studies, dithiaden (an antagonist of histamine H1-receptor, used clinically as an anti-allergic or anti-emetic drug) in a concentration range of 5×10-5-10-4 M decreased the production of reactive oxygen species by phagocytes. In this study we investigated the influence of dithiaden on nitric oxide (NO) production by LPS-stimulated macrophages.

The cell viability in the presence of 10-4-5×10-5 M dithiaden was evaluated by an ATP-test. RAW 264.7 cells (2.5×106/well) were preincubated with dithiaden for 60 mins and subsequently stimulated with 0.1 μg/ml of bacterial lipopolysaccharide. After incubating for 24 hours the NO production was determined spectrophotometrically using Griess reaction as a concentration of nitrites (the end product of NO metabolism) accumulated in the cell supernatants. The expression of inducible nitric oxide synthase (iNOS) in cell-lysates was evaluated using Western blot analysis. Scavenging properties of dithiaden against NO were evaluated amperometrically. Our data demonstrate that dithiaden in the concentration of 5×10-5 M (approved by ATP test as non toxic) caused a significant decrease in the accumulation of nitrites, and in addition, this decline was followed by a marked reduction of iNOS protein expression. Amperometrical analysis did not show any scavenging properties of dithiaden against NO.

From this data it can be suggested that the inhibition effect of dithiaden on macrophage NO production is caused exclusively by the suppression of iNOS protein expression.

Chemiluminescence response induced by mesenteric ischaemia/reperfusion: effect of antioxidative compounds ex vivo

Ischaemia and reperfusion (I/R) play an important role in human pathophysiology as they occur in many clinical conditions and are associated with high morbidity and mortality. Interruption of blood supply rapidly damages metabolically active tissues. Restoration of blood flow after a period of ischaemia may further worsen cell injury due to an increased formation of free radicals. The aim of our work was to assess macroscopically the extent of intestinal pathological changes caused by mesenteric I/R, and to study free radical production by luminol enhanced chemiluminescence (CL) of ileal samples. In further experiments, the antioxidative activity of the drugs tested was evaluated spectrophotometrically by the use of the DPPH radical. We studied the potential protective ex vivo effect of the plant origin compound arbutin as well as of the pyridoindole stobadine and its derivative SMe1EC2. I/R induced pronounced haemorrhagic intestinal injury accompanied by increase of myeloperoxidase (MPO) and N-acetyl-β-D-glucosaminidase (NAGA) activity. Compared to sham operated (control) rats, there was only a slight increase of CL response after I/R, probably in association with neutrophil increase, indicated by enhanced MPO activity. All compounds significantly reduced the peak values of CL responses of the ileal samples ex vivo, thus reducing the I/R induced increase of free radical production. The antioxidants studied showed a similar inhibitory effect on the CL response influenced by mesenteric I/R. If proved in vivo, these compounds would represent potentially useful therapeutic antioxidants.


In this study we investigated the effect of five therapeutically used drugs and four natural polyphenolic compounds on the mechanism of oxidative burst of human neutrophils concerning their participation in the generation of reactive oxygen species (ROS). The compounds investigated decreased the oxidative burst of whole blood in the rank order of potency: N-feruloylserotonin > quercetin > curcumin > arbutin > dithiaden > carvedilol. The generation of intracellular reactive oxygen species in isolated neutrophils decreased in the same rank order, while carvedilol was ineffective. Scavenging of extracellular oxygen radicals followed the rank order of potency: N-feruloylserotonin > curcumin > quercetin > dithiaden. Arbutin and carvedilol had no effect. All compounds tested increased the activity of caspase-3 in cell-free system indicating a positive effect on apoptosis of neutrophils. Activation of protein kinase C was significantly decreased by dithiaden, curcumin, quercetin and N-feruloylserotonin. Carvedilol, dithiaden, quercetin and arbutin reduced activated neutrophil myeloperoxidase release more significantly compared with their less pronounced effect on superoxide generation The presented results are indicative of pharmacological intervention with neutrophils in pathological processes. Of particular interest was the effect of natural compounds. Intracellular inhibition of oxidative burst in isolated neutrophils by the drugs tested and natural antioxidants has to be further analysed since ROS play an important role in immunological responses of neutrophils.

Modulation of metabolic activity of phagocytes by antihistamines

The purpose of the study was to investigate the effects of H1-antihistamines of the 1st generation (antazoline, bromadryl, brompheniramine, dithiaden, cyclizine, chlorcyclizine, chlorpheniramine, clemastine) and the 2nd generation (acrivastine, ketotifen, and loratadine) on the respiratory burst of phagocytes. Reactive oxygen species generation in neutrophils isolated from rat blood was measured using luminol-enhanced chemiluminescence. Changes in nitrite formation and iNOS protein expression by RAW 264.7 macrophages were analysed using Griess reaction and Western blotting. The antioxidative properties of drugs in cell-free systems were detected spectrophotometrically, luminometrically, fluorimetrically, and amperometrically. The majority of the H1-antihistamines tested (bromadryl, brompheniramine, chlorcyclizine, chlorpheniramine, clemastine, dithiaden, and ketotifen) exhibited a significant inhibitory effect on the chemiluminescence activity of phagocytes. H1-antihistamines did not show significant scavenging properties against superoxide anion and hydroxyl radical, thus this could not contribute to the inhibition of chemiluminescence. H1-antihistamines had a different ability to modulate nitric oxide production by LPS-stimulated macrophages. Bromadryl, clemastine, and dithiaden were the most effective since they inhibited iNOS expression, which was followed by a significant reduction in nitrite levels. H1-antihistamines had no scavenging activity against nitric oxide. It can be concluded that the effects observed in the H1-antihistamines tested are not mediated exclusively via H1-receptor pathway or by direct antioxidative properties. Based on our results, antihistamines not interfering with the microbicidal mechanisms of leukocytes (antazoline, acrivastine and cyclizine) could be used preferentially in infections. Other antihistamines should be used, under pathological conditions accompanied by the overproduction of reactive oxygen species.

Protection of the vascular endothelium in experimental situations

One of the factors proposed as mediators of vascular dysfunction observed in diabetes is the increased generation of reactive oxygen species (ROS). This provides support for the use of antioxidants as early and appropriate pharmacological intervention in the development of late diabetic complications. In streptozotocin (STZ)-induced diabetes in rats we observed endothelial dysfuction manifested by reduced endothelium-dependent response to acetylcholine of the superior mesenteric artery (SMA) and aorta, as well as by increased endothelaemia. Changes in endothelium-dependent relaxation of SMA were induced by injury of the nitric oxide radical (·NO)-signalling pathway since the endothelium-derived hyperpolarising factor (EDHF)-component of relaxation was not impaired by diabetes. The endothelial dysfunction was accompanied by decreased ·NO bioavailabity as a consequence of reduced activity of eNOS rather than its reduced expression. The results obtained using the chemiluminiscence method (CL) argue for increased oxidative stress and increased ROS production. The enzyme NAD(P)H-oxidase problably participates in ROS production in the later phases of diabetes. Oxidative stress was also connected with decreased levels of reduced glutathione (GSH) in the early phase of diabetes. After 10 weeks of diabetes, adaptational mechanisms probably took place because GSH levels were not changed compared to controls. Antioxidant properties of SMe1EC2 found in vitro were partly confirmed in vivo. Administration of SMe1EC2 protected endothelial function. It significantly decreased endothelaemia of diabetic rats and improved endothelium-dependent relaxation of arteries, slightly decreased ROS-production and increased bioavailability of ·NO in the aorta. Further studies with higher doses of SMe1EC2 may clarify the mechanism of its endothelium-protective effect in vivo.