Search Results

You are looking at 1 - 6 of 6 items for

  • Author: K.M. Lim x
Clear All Modify Search
Open access

Seung-Yeon Park, J.H. Kim, S.J. Seo, J.S. On and K.M. Lim

Abstract

In this study, we have developed the manufacturing technology for high strength gray cast irons by using the spent permanent magnet scraps. The cast specimen inoculated by using a spent magnet scraps showed the excellent tensile strength up to 306MPa. This tensile strength value is 50MPa higher than that of the specimen cast without inoculation, and is similar to that of the specimen inoculated by using the expensive misch-metal. These superior mechanical properties are attributed to complex sulfides created during solidification that promote the formation and growth of Type-A graphite. It is therefore concluded that spent magnets scrap can provide an efficient and cost-effective inoculation agent for the fabrication of high-performance gray cast iron.

Open access

S.A. Song, M.J. Lim, K.Y. Jung, W.-W. So and S.-J. Moon

Abstract

In this work, TiO2 nanoparticles and submicron-sized granules were synthesized by a hydrothermal method and spray pyrolysis, respectively. Submicron-sized granules were dispersed into the nano-sized TiO2 layer to improve the light conversion efficiency. Granules showed better light scattering, but lower in terms of the dye-loading quantity and recombination resistance compared with nanoparticles. Consequently, the nano-sized TiO2 layer had higher cell efficiency than the granulized TiO2 layer. When dispersed granules into the nanoparticle layer, the light scattering was enhanced without the loss of dye-loading quantities. The dispersion of granulized TiO2 led to increase the cell efficiency up to 6.51%, which was about 5.2 % higher than that of the electrode consisting of only TiO2 nanoparticles. Finally, the optimal hydrothermal temperature and dispersing quantity of granules were found to be 200°C and 20 wt%, respectively.

Open access

S.M. Kahar, C.H. Voon, C.C. Lee, U. Hashim, M.K. Md Arshad, B.Y. Lim, S.C.B. Gopinath and W. Rahman

Abstract

Silicon carbide (SiC) is an important ceramics for engineering and industrial applications due to its advantage to withstand in high temperatures. In this article, a demonstration of SiC nanowhiskers synthesis by using microwave heating has been shown. The mixtures of raw materials in the form of pellets were heated, using a laboratory microwave furnace, to 1400 °C for 40 minutes at a heating rate of 20 °C/min. The characterization process proved that the mixture of graphite and silica in the ratio of 1:3 is an ideal composition for synthesizing single phase β-SiC nanowhiskers. Vapor-solid mechanism was suggested to explain the formation of SiC nanowhiskers by the proposed microwave heating.

Open access

Kelly Sze Wee Koh, Leslie Soon-Lim Chan and Samuel K. M. Ho

Abstract

In Singapore, service sectors are dominated by SMEs. This study set out to investigate customer satisfaction as a critical factor in SME survival and indeed in helping to maintain the overall health of the economy. In this study, data were collected from a Singaporean SME which supplies and installs glass for construction projects. Departments involved were Sales & Marketing, Administration, and Installation. A questionnaire survey was administered to every customer of the company in 2013 in order to evaluate the services provided by the three departments. Customers were categorized into five groups: main contractors, designers/sub-contractors, property managers, home owners and commercial owners. Data were analyzed in terms of thirteen customer service variables identified from the literature. Statistical methods were applied to data analysis and findings were arrived at. Findings were found to be sufficiently significant to permit the formulation of a Total Customer Service Excellence Model for SMEs in Singapore.

Open access

D.-J. Kim, K.M. Kim, J.H. Shin, Y.M. Cheong, E.H. Lee, G.G. Lee, S.W. Kim, H.P. Kim, M.J. Choi, Y.S. Lim and S.S. Hwang

Abstract

Fast water flow facilitates ferrous ion transport leading to flow accelerated corrosion (FAC) of carbon steel and the possibility of a large accident through a failure of a secondary pipe in a nuclear power plant. Ion transport is directly linked to oxide properties such as the thickness, chemical composition and porosity. This work deals with a precise observation of the cross section of the corroded specimen focusing on an oxide passivity and its thickness using SEM (scanning electron microscope) and TEM (transmission electron microscope) as well as an apparent weight loss and a surface observation for the specimens corroded using a rotating cylindrical electrode autoclave system in pure water of pH 7 at 150°C having dissolved oxygen below 1 ppb within a flow rate range of 0 to 10 m/s. The Cr content in steel was changed from 0.02 to 2.4 wt%. Increasing the Cr content in the alloy, the FAC rate and oxide thickness decreased. The oxide porosity tends to decrease with the Cr content and immersion time owing to the development of Cr containing oxide. The oxidation behavior is not changed with the immersion time.

Open access

C.H. Voon, B.Y. Lim, S.C.B. Gopinath, Y. Al-Douri, K.L. Foo, M.K. Md Arshad, S.T. Ten, A.R. Ruslinda, U. Hashim and V.C.S. Tony

Abstract

Cuprous oxide, a narrow bandgap p-type semiconductor, has been known as a potential material for applications in supercapacitors, hydrogen production, sensors, and energy conversion due to its properties such as non-toxicity, easy availability, cost effectiveness, high absorption coefficient in the visible region and large minority carriers diffusion length. In this study, Cu2O nanostructured thin film was fabricated by anodizing of Cu plates in ethylene glycol containing 0.15 M KOH, 0.1 M NH4F and 3 wt.% deionized water. The effects of anodizing voltage and temperature of electrolyte were investigated and reported. It was found that nanoporous Cu2O thin film was formed when anodizing voltages of 50 V and 70 V were used while a dense Cu2O thin film was formed due to the aggregation of smaller nanoparticles when 30 V anodizing voltage was used. Nanoplatelets thin film was formed when the temperature of electrolyte was reduced to 15 °C and 5 °C. X-ray diffraction confirmed the presence of Cu2O phase in thin film formed during anodizing of Cu plates, regardless of the anodizing voltage and temperature of electrolyte. Photoluminescence spectroscopy showed the presence of Cu2O peak at 630 nm corresponding to band gap of 1.97 eV. A mechanism of the formation of Cu2O thin film was proposed. This study reported the ease of tailoring Cu2O nanostructures of different morphologies using anodizing that may help widen the applications of this material