Search Results

You are looking at 1 - 3 of 3 items for

  • Author: K. Naplocha x
Clear All Modify Search
Open access

K. Naplocha and K. Granat

Abstract

The combustion synthesis of porous skeletons (preforms) of intermetallic Al–Cr compounds intended for metal matrix composite MMC reinforcing was developed. Mixture of Al and Cr powders with granularity of −10, −44, −74mm were cold isostatic pressed and next ignited and synthetized in a microwave reactor under argon atmosphere (microwave-activated combustion synthesis MACS). In order to ignite the synthesis, microwave energy was focused by a tuner on the specimen. The analysis of reaction temperature diagrams revealed that the synthesis proceeded through the following peritectic transformations: L(liquidus)+Al7Cr→L+Al11Cr2→L+Al4Cr. Moreover, EDS and XRD examinations showed that the reaction proceeded between a solid Cr and a liquid Al to create a distinct envelope of Al9Cr4 on Cr particle which next extended and spreaded over the entire structure. The produced preforms with uniform structure and interconnected porosity were infiltrated with liquid Cu and Al alloy. The obtained composite materials exhibited high hardness, wear and distinct temperature oxidation resistance.

Open access

K. Naplocha, A. Koniuszewska, J. Lichota and J.W. Kaczmar

Abstract

Development of open cellular metal foam technology based on investment casting applying the polyurethane pattern is discussed. Technological process comprises preparing of the ceramic mold applying PUR foam as the pattern, firing of the mold, pouring of the liquid Zn-Al alloy into the mold and washing out of the ceramic material from cellular casting. Critical parameters such as the temperature of mold and poured metal, design of gating system affected by metalostatic pressure allowed to produce castings with cellular structure characterized by the open porosity.

Metal cellular foams with the open porosity embedded in phase change material (PCM) enhance heat transfer and reduce time operations in energy storage systems. Charging and discharging were performed at the laboratory accumulator by heating and cooling with flowing water characterized by the temperatures of 97-100°C. Temperature measurements were collected from 7 different thermocouples located in the accumulator. In relation to the tests with pure paraffin, embedding of the metal Zn-Al cellular foam in paraffin significantly decreases temperature gradients and melting time of paraffin applied as PCM characterized by the low thermal conductivity. Similarly, reduction of discharging time by this method improves the efficiency of thermal energy storage system applied in solar power plants or for the systems of energy efficient buildings.

Open access

J.W. Kaczmar, K. Granat, K. Naplocha, A. Kurzawa, E. Grodzka and B. Samociuk

Abstract

Bending strength, thermal and electric conductivity and microstructure examinations of Cu based composite materials reinforced with Saffil alumina fibres are presented. Materials were produced by squeeze casting method applying the designed device and specially elaborated production parameters. Applying infiltration pressure of 90MPa and suitable temperature parameters provided manufacturing of copper based composite materials strengthened with Saffil alumina fibres characterized by the low rest porosity and good fibre-matrix interface. Three point bending tests at temperatures of 25, 100 and 300ºC were performed on specimens reinforced with 10, 15 and 20% of Saffil fibres. Introduced reinforcement effected on the relatively high bending strengths at elevated temperatures. In relation to unreinforced Cu casting strength of composite material Cu - 15vol.% Saffil fibres increase by about 25%, whereas at the highest applied test temperature of 300oC the improvement was almost 100%. Fibres by strengthening of the copper matrix and by transferring loads from the matrix reduce its plastic deformation and hinder the micro-crack developed during bending tests. Decreasing of thermal and electrical conductivity of Cu after incorporating fibres in the matrix are relatively small and these properties can be acceptable for electric and thermal applications.