Search Results

You are looking at 1 - 5 of 5 items for

  • Author: K. Gołombek x
Clear All Modify Search
Open access

K. Matus, M. Pawlyta, G. Matula and K. Gołombek

Abstract

The aim of this article of this paper is to present issues related to characterization of nanometric-sized carbides, nitrides and/or carbonitrides formed during tempering of carbide-steel cermets. Closer examination of those materials is important because of hardness growth of carbide-steel cermet after tempering. The results obtained during research show that the upswing of hardness is significantly higher than for high-speed steels. Another interesting fact is the displacement of secondary hardness effect observed for this material to a higher tempering temperature range. Determined influence of the atmosphere in the sintering process on precipitations formed during tempering of carbide-steel cermets. So far examination of carbidesteel cermet produced by powder injection moulding was carried out mainly in the scanning electron microscope. A proper description of nanosized particles is both important and difficult as achievements of nanoscience and nanotechnology confirm the significant influence of nanocrystalline particles on material properties even if its mass fraction is undetectable by standard methods. The following research studies have been carried out using transmission electron microscopy, mainly selected area electron diffraction and energy dispersive spectroscopy. The obtained results and computer simulations comparison were made.

Open access

A. Śliwa, J. Mikuła, K. Gołombek, W. Kwaśny and D. Pakuła

Abstract

The aim of work is the investigation of the internal stresses in PVD coated metal matrix composites (MMC). Sintered MMC substrate is composed of the matrix with the chemical composition corresponding to the high-speed steel, reinforced with the TiC type hard carbide phase. Functionally graded composition of MMC providing of high ductility characteristic of steel in the core zone as well as high hardness characteristic of cemented carbides in the surface zone. Internal stresses were determined with use of finite element method in ANSYS environment. The reason of undertaking the work is necessity of develop the research of internal stresses, occurring in the coating, as well as in the adhesion zone of coating and substrate, which makes it possible to draw valuable conclusions concerning engineering process of the advisable structure and chemical composition of coatings. The investigations were carried out on cutting tool’s models containing defined zones differing in chemical composition.

Modelled materials were characteristic of chemical composition corresponding to the high-speed steel at the core, reinforced with the TiC type hard carbide phase with the growing fraction of these phases in the outward direction from the core to the surface, additionally coated with (Ti,Al)N or Ti(C,N) functionally graded PVD coatings.

Results of determined internal stresses were compared with the results calculated using experimental X-ray sin2ψ method. It was demonstrated, that the presented model meets the initial criteria, which gives ground to the assumption about its utility for determining the stresses in coatings as well as in functionally graded sintered materials. The results of computer simulations correlate with the experimental results.

Open access

D. Janicki, J. Górka, W. Kwaśny, K. Gołombek, M. Kondracki and M. Żuk

Abstract

Metal matrix composite (MMC) surface layers reinforced by WC were fabricated on armor steel ARMOX 500T plates via a laser surface alloying process. The microstructure of the layers was assessed by scanning electron microscopy and X-ray diffraction.

The surface layers having the WC fraction up to 71 vol% and an average hardness of 1300 HV were produced. The thickness of these layers was up to 650 μm. The addition of a titanium powder in the molten pool increased the wettability of WC particles by the liquid metal in the molten pool increasing the WC fraction. Additionally, the presence of titanium resulted in the precipitation of the (Ti,W)C phase, which significantly reduced the fraction of W-rich complex carbides and improved a structural integrity of the layers.

Open access

A. Kajzer, W. Kajzer, K. Gołombek, M. Knol, J. Dzielicki and W. Walke

Abstract

The paper presents the influence of mechanical surface damage on the physicochemical properties of plates after implantation made of CrNiMo stainless steel, used in the treatment of anterior surface deformity of the chest. Analysis of the data allowed us to investigate the effect of implant design and condition of their surface on the results of chest deformation treatment. Results of electrochemical, impedance and surface wettability tests and SEM observations were compared with clinical observations. When removing the plates we found only slight inflammatory-periosteal reactions. On the basis of obtained results, it can be stated that plates, in spite of mechanical damage of the surface, were characterized by good corrosion resistance, a fact which is confirmed by the results of clinical evaluation.

Open access

D. Pakuła, M. Staszuk, K. Gołombek, A. Śliwa and J. Mikuła

Abstract

This work presents studies of the structure and functional properties of coatings deposited onto indexable inserts made of nitride and sialon tool ceramics with the required properties, i.e. high adhesion, microhardness, high resistance to abrasive and diffusion wear in working conditions of high-performance cuttings tools. In the present paper the results of the investigations of the structure, texture, mechanical and functional properties of the Ti(C,N), (Ti,Al)N, Ti(C,N)+(Ti,Al)N coatings were presented. The 80% increase in the hardness of the coatings in comparison to the substrate material was reported. Test coatings are characterized by good adhesion to the substrate. The maximum Lc load of (Ti,Al)N coat applied to the substrate from the nitride ceramics is equal to 42 N. In the studied coatings compressive stresses were found. The results of mechanical properties investigations, especially tribological ones correlate with the results of exploitation tests carried out during the cutting test.