Search Results

1 - 3 of 3 items

  • Author: Juraj Švajda x
Clear All Modify Search

Abstract

Since the last decades, natural disturbances in forests including protected areas have intensified. They have the potential to impact visual quality and safety of visitors as well as spread beyond protected area boundaries. While economic and ecological impacts are well studied, there is still a lack of work focused on human dimensions and social aspects. This study examines visitor perceptions towards bark beetle infestation in Tatra National Park, Poland. The findings, based on visitor surveys collected during the summer of 2014, indicate the significance of different factors influencing visitor attitudes towards the bark beetle. Age of visitors and importance of the bark beetle issue for them (based on subjective ratings of importance of bark beetle issue for respondents) are the most prominent variables. Also place of origin and environmental worldview were recognized as significantly important variables in accordance with similar studies. Results suggest management implications for park authorities including public relations and environmental education in order to increase knowledge and support for natural disturbance and ecological integrity policies in the national park.

Abstract

Tatra National Park is considered as the most visited protected area in Slovakia. Striking a balance between the preservation of natural resources and opportunities for public recreation often forces responsible authorities to make compromises between visitation impacts and protection. In this case, the microbial investigation of recreation effects on water and soil in the Tatra National Park were studied.

The study areas were two valleys – Malá Studená, accessible by trail from south with higher human impact and visitation, including mountain huts Téryho and Zamkovského chata and Javorová, accessible from the northern part with a low number of visitors. Soil samples were taken from the main path, 30 cm away from it and water samples from or near the main path in both valleys. The selected colonies, after the cultivation on TSA medium were also analysed according to the dry and semi-extraction procedure of MALDI–TOF method. Most of the obtained strains are endospore forming, psychrotolerant species like Pseudomonas, Bacillus or Paenibacillus away of path, which corresponds with the climate and geographical conditions. But, the relatedness of soil sample strains in both valleys increases with rising altitude, with distance away from path; in contrast, the relatedness of water samples strains in both valleys increases with increasing distance sample areas from chalet and frequent visitors’ places. Water and soil samples were processed for community level physiological profiling using Biolog EcoPlates. The obtained results of carbon source utilization abilities of bacterial communities in both valleys suggested lower diversity in Javorová Valley, which corresponds probably with less visitor intensity, with less anthropogenic impact as well as with less risk of xenobiotics presence in environment.

Abstract

The impact of climate change on forest ecosystems may manifest itself by a shift in forest vegetation zones in the landscape northward and into higher elevations. Studies of climate change-induced vegetation zone shifts in forest ecosystems have been relatively rare in the context of European temperate zone (apart from Alpine regions). The presented paper outlines the results of a biogeographic model of climatic conditions in forest vegetation zones applied in the Central European landscape. The objective of the study is a prediction of future silvicultural conditions for the Norway spruce (Picea abies L. Karst.), which is one of the principal tree species within European forests. The model is based on a general environmental dependence of forest vegetation zones on the long-term effect of altitudinal and exposure climates defined by the mean and extreme air temperatures and the amount and distribution of atmospheric precipitation. The climatological data for the model were provided by a validated regional climate database for 2010 – 2090 according to the SRES A1B scenario, bound to specific geo-referenced points in the landscape. The geobiocoenological data in the model were provided by the Biogeography Register database which contains ecological data on the landscape bound to individual cadastres of the entire Czech Republic. The biogeographic model applies special programs (the FORTRAN programming language) in the environment of geographic information systems. The model outputs can be clearly graphically visualized as scenarios of predicted future climatic conditions of landscape vegetation zones. Modelling of the regional scenario of changes in the climatic conditions of forest vegetation zones reveals that in the prediction period of 2070 and beyond, good and very good climatic conditions for the cultivation of forests with dominant Norway spruce will be found only in some parts of its today’s native range in forest vegetation zones 5 – 8. Based on the results provided by the regional scenario, the authors of this paper recommend fundamental reassessment of the national strategy of sustainable forest management in the Czech Republic, stipulating that the current practice of spruce cultivation be reduced only to areas specifically defined by the biogeographic model. The paper shows that biogeographic models based on the concept of vegetation zoning can be applied not only in regional scenarios of climate change in the landscape but also as support tools for the creation of strategies of sustainable forest management.