Search Results

1 - 2 of 2 items

  • Author: Juan Belmonte-Beitia x
Clear All Modify Search


We present an analysis of a mathematical model describing the key features of the most frequent and aggressive type of primary brain tumor: glioblastoma. The model captures the salient physiopathological characteristics of this type of tumor: invasion of the normal brain tissue, cell proliferation and the formation of a necrotic core. Our study, based on phase space analysis, geometric perturbation theory, exact solutions and numerical simulations, proves the existence of bright solitary waves in the tumor coupled with kink and anti-kink fronts for the normal tissue and the necrotic core. Finally, we study the linear stability of the solutions to calculate the time of tumor recurrence.


In this manuscript, we shall apply the tools and methods from optimal control to analyze various minimally parameterized models that describe the dynamics of populations of cancer cells and elements of the tumor microenvironment under different anticancer therapies. In spite of their simplicity, the analysis of these models that capture the essence of the underlying biology sheds light on more general scenarios and, in many cases, leads to conclusions that confirm experimental studies and clinical data. We focus on four applications: optimal control applied to compartmental models, brain tumors, drug resistance and antiangiogenic treatment.