Search Results

1 - 2 of 2 items

  • Author: Jouni Punkki x
Clear All Modify Search


Concrete is often sensitive to cracking during the hardening process, and these cracks could be the result of early-age shrinkage. One method to reduce shrinkage is to add different types of fibres to concrete. The aim of this study was to study the effects of different types of fibres on the early-age autogenous shrinkage of concrete. Three different types of fibre materials were used in the research. A “Schleibinger Bending-drain” test setup was used to record early-age autogenous shrinkage of fresh concrete immediately after mixing. The results show that, a fibre dosage of 0.38% by volume was found to be effective in reducing the effects of early-age autogenous shrinkage of concrete.


Air contents of concrete are necessary for concrete durability in freeze-thaw exposure. According to the Finnish concrete code, the target value for air content varies between 4% and 5.5% for XF - exposure classes. Lately in Finland, some cases showed an elevation of air contents up to 15% in fresh air-entrained concrete at construction site and in drilled concrete samples.

The objectives of this study were to investigate the stability of air entrainment by measuring the air content elevation 30 minutes and 60 minutes after concrete mixing and investigating the concrete sensitivity to segregation. Composition of concretes used in this study include 7 different combination of PCE based superplasticizer and air-entraining agent admixtures, cement content of 425 kg/m3, two consistency classes S3 with water to cement ration of 0.33 and F5 with water to cement ration of 0.38. One cement type was used for all concrete mixes. The concretes were mixed for 2 minutes and 5 minutes mixing times.

The results show that the elevation of the air content of fresh concrete depends on the consistency of the concrete and on the used combination of superplasticizer and air-entraining agents. The higher consistency classes concretes have more risk of air elevation with some combinations of PCE-based superplasticizers and air-entraining agents. The results also indicate that short mixing time would not be enough to achieve total effectivity of some air-entraining agents, especially for higher consistency classes concrete.