Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Joanna Piotrowska-Woroniak x
Clear All Modify Search
Open access

Joanna Piotrowska-Woroniak

Abstract

The article presents the use of photovoltaic installation in a building with office space and a section for kindergarten to support the production of electricity using solar energy. Accepted technological installation solution, capital expenditures to be incurred for the project and payback time are shown. Paper presents the results of the performance simulation of the PV system adopted depending on the angle of photovoltaic panels. Designed photovoltaic installation consists of 62 panels with a total nominal power of 15.5 kW. The use of photovoltaics in the facility allow reducing carbon dioxide emissions into the atmosphere by approximately 52%. In Poland, most of the electricity produced is still based on coal and lignite. Photovoltaics is one of the renewable sources of energy, so-called “Green” energy. The investment could be made thanks to the Regional Operational Programme Podlaski, Activity 5.2 Development of local infrastructure, environmental protection 2007-2013.

Open access

Janusz Terpiłowski, Joanna Piotrowska-Woroniak and Julita Romanowska

Abstract

Transient heat transfer is studied and compared in two planeparallel composite walls and one EPIDIAN 53 epoxy resin wall acting as a matrix for both composites. The first of the two walls is made of carbonepoxy composite; the other wall is made of glass-epoxy composite, both with comparable thickness of about 1 mm and the same number of carbon and glass fabric layers (four layers). The study was conducted for temperatures in the range of 20-120 °C. The results of the study of thermal diffusivity which characterizes the material as a heat conductor under transient conditions have a preliminary character. Three series of tests were conducted for each wall. Each series took about 24 h. The results from the three series were approximated using linear functions and were found between (0.7-1.35)×10−7m2/s. In the whole range of temperature variation, the thermal diffusivity values for carbon-epoxy composite are from 1.2 to 1.5 times higher than those for the other two materials with nearly the same thermal diffusivity characteristics.