Search Results

1 - 2 of 2 items

  • Author: Jindřich Matoušek x
Clear All Modify Search

Abstract

Two basic tasks are covered in this paper. The first one consists in the design and practical testing of a new method for voice de-identification that changes the apparent age and/or gender of a speaker by multi-segmental frequency scale transformation combined with prosody modification. The second task is aimed at verification of applicability of a classifier based on Gaussian mixture models (GMM) to detect the original Czech and Slovak speakers after applied voice deidentification. The performed experiments confirm functionality of the developed gender and age conversion for all selected types of de-identification which can be objectively evaluated by the GMM-based open-set classifier. The original speaker detection accuracy was compared also for sentences uttered by German and English speakers showing language independence of the proposed method.

Abstract

The paper describes an experiment with using the Gaussian mixture models (GMM) for automatic classification of the speaker age and gender. It analyses and compares the influence of different number of mixtures and different types of speech features used for GMM gender/age classification. Dependence of the computational complexity on the number of used mixtures is also analysed. Finally, the GMM classification accuracy is compared with the output of the conventional listening tests. The results of these objective and subjective evaluations are in correspondence.