Search Results

1 - 9 of 9 items

  • Author: Jerzy Kowalski x
Clear All Modify Search

Abstract

Presented paper shows the results of the laboratory tests on the relationship between the extreme throttling of both air intake duct and exhaust gas duct and gaseous emission from the marine engine. The object of research is a laboratory, 4-stroke, DI diesel engine, operated at loads from 50 kW to 250 kW at a constant speed equal to 750 rpm. During the laboratory tests the thermodynamic and exhaust gas emission characteristics of the engine were measured with technical condition recognized as “working properly” and with simulated throttling of both air intake duct and exhaust gas duct. Air intake duct throttling by 60% causes visible changes at both gas temperature and pressure behind the intercooler. The study results show significant changes of NOx and CO2 emission for considered air intake duct throttling. The best indicator of exhaust gas duct throttling among considered thermodynamic parameters of the engine is mean in-cylinder pressure. In the case of measuring the composition of exhaust gas, the throttling of the exhaust gas duct causes visible changes in CO2 and NOx emission. The conclusion is that the results of measurements of the composition of the exhaust gas may contain valuable diagnostic information about the technical condition of air intake and exhaust gas duct of the marine engine.

ANN based evaluation of the NOx concentration in the exhaust gas of a marine two-stroke diesel engine

The article presents results of a study on the possible application of artificial neural networks (ANNs) to the evaluation of NOx concentration in the exhaust gas of a marine two-stroke Diesel engine. A concept is presented how to use the ANN as an alternative to direct measurements carried out on a ship at sea. Methods of proper ANN selection, configuration and training are presented. Also included are the results of laboratory tests, performed to obtain data for ANN training and tests, and the results obtained from modelling certain processes with the aid of selected ANNs. As a result of the performed investigations, an ANN was constructed and trained to calculate NOx concentration in the Diesel engine exhaust gas based on the engine operation parameters measured with an average error of 1.83%, and the fuel consumption measured with an average error of 1.12%.

Abstract

The presented paper shows the results of the laboratory study on the relation between chosen malfunctions of a fuel injector and composition of exhaust gas from the marine engine. The object of research is a marine 3-cylinder, four-stroke, direct injection diesel engine with an intercooler system. The engine was loaded with a generator and supercharged. The generator was electrically connected to the water resistance. The engine operated with a load between 50 kW and 250 kW at a constant speed. The engine load and speed, parameters of the turbocharger, systems of cooling, fuelling, lubricating and air exchange, were measured. Fuel injection and combustion pressures in all cylinders of the engine were also recorded. Exhaust gas composition was recorded by using a electrochemical gas analyzer. Air pressure, temperature and humidity were also recorded. Emission characteristics of the engine were calculated according to ISO 8178 standard regulations. During the study the engine operated at the technical condition recognized as „working properly” and with simulated fuel injector malfunctions. Simulation of malfunctions consisted in the increasing and decreasing of fuel injector static opening pressure, decalibration of fuel injector holes and clogging 2 neighboring of 9 fuel injector holes on one of 3 engine cylinders.

Abstract

Presented paper shows the results of the laboratory tests on the relationship between throttling of both air intake duct and exhaust gas duct and a gaseous emission from the marine engine. The object of research is a laboratory, four-stroke, DI diesel engine, operated at loads from 50 kW to 250 kW at a constant speed equal to 750 rpm. During the laboratory tests over 50 parameters of the engine were measured with its technical condition recognized as a „working properly” and with simulated leakage of both air intake valve and exhaust gas valve on the second cylinder. The results of this laboratory research confirm that the leakage of cylinder valves causes no significant changes of the thermodynamic parameters of the engine. Simulated leakages through the inlet and exhaust valve caused a significant increase in fuel consumption of the engine. Valve leakages cause an increase of the exhaust gas temperature behind the cylinder with leakage and behind other cylinders. The exhaust gas temperature increase is relatively small and clearly visible only at low loads of the engine. The increase of the temperature and pressure of the charging air behind the intercooler were observed too. Charging air temperature is significantly higher during the engine operation with inlet valve leakage. The study results show significant increases of the CO, NOx and CO2 emission for all the mentioned malfunctions. The conclusion is that the results of measurements of the composition of the exhaust gas may contain valuable diagnostic information about the technical condition of the air intake duct and the exhaust gas duct of the marine engine.

Abstract

This paper presents the slope stability analysis for the current as well as projected (final) geometry of waste dump Sandstone Open Pit “Osielec”. For the stability analysis six sections were selected. Then, the final geometry of the waste dump was designed and the stability analysis was conducted. On the basis of the analysis results the opportunities to improve the stability of the object were identified. The next issue addressed in the paper was to determine the proportion of the mixture containing mining and processing wastes, for which the waste dump remains stable. Stability calculations were carried out using Janbu method, which belongs to the limit equilibrium methods.

Abstract

The article presents experimental research that has been carried out on a marine, 4-stroke, 3-cylinder, turbocharged engine. During testing, the engine operated at a constant rotational speed of 750 rpm and a load from 0 kW to 280 kW. The engine was fuelled by diesel oil of known specification and loaded by electric generator with water resistance. The fuel consumption was measured during the engine operation with fuel nozzles with different geometries. The measurement of the fuel consumption was carried out using a weighing system that was designed, constructed, and manufactured by the “KAIZEN” scientific research team at the Faculty of Mechanical Engineering at the Gdynia Maritime University. The results of measurements show changes in the fuel consumption by the engine with the geometry of the injected fuel spray. The research facility is Sulzer’s 3-cylinder, 4-stroke, turbocharged AL25/30 piston engine. The fuel system consists of Bosch injection pumps controlled by a rotation speed regulator. Fuel injectors are centrally located in the cylinder heads of the engine.

Abstract

In aeronautics, the question of maintaining the highest possible level of flight safety is the most crucial issue. This is the reason why the scientists, engineers, and aerospace/aviation engineering staff keep searching for ever newer and more reliable methods of increasing the safety level. Therefore, new methods - primarily nondestructive ones - to diagnose aircraft turbine engines are looked for. These methods are expected to prove useful for the real-time monitoring of actual health of the engine and its assemblies. The paper has been intended to outline the most recent methods of diagnosing aircraft turbine engines, including the computed tomography methods as applied to assess health/maintenance status of turbine blades, for the phase mapping of increments in the engine’s rotational speed, to diagnose health/maintenance status of the compressor’s 1st stage rotor blades in pure jets. Other methods discussed are, e.g. vibroacoustic and tribological ones

Abstract

Improving the effects of hydrolysis on waste activated sludge (WAS) prior to anaerobic digestion is of primary importance. Several technologies have been developed and partially implemented in practice. In this paper, perhaps the simplest of these methods, alkaline solubilization, has been investigated and the results of hydrolysis are presented. An increase to only pH 8 can distinctively increase the soluble chemical oxygen demand (SCOD), and produce an anaerobic condition effect favorable to volatile fatty acids (VFA) production. Further increases of pH, up to pH 10, leads to further improvements in hydrolysis effects. It is suggested that an increase to pH 9 is sufficient and feasible for technical operations, given the use of moderate anti-corrosive construction material. This recommendation is also made having taken in consideration the option of using hydrodynamic disintegration after the initial WAS hydrolysis process. This paper presents the effects of following alkaline solubilization with hydrodynamic disintegration on SCOD

Abstract

Nowadays, in positron emission tomography (PET) systems, a time of flight (TOF) information is used to improve the image reconstruction process. In TOF-PET, fast detectors are able to measure the difference in the arrival time of the two gamma rays, with the precision enabling to shorten significantly a range along the line-of-response (LOR) where the annihilation occurred. In the new concept, called J-PET scanner, gamma rays are detected in plastic scintillators. In a single strip of J-PET system, time values are obtained by probing signals in the amplitude domain. Owing to compressive sensing (CS) theory, information about the shape and amplitude of the signals is recovered. In this paper, we demonstrate that based on the acquired signals parameters, a better signal normalization may be provided in order to improve the TOF resolution. The procedure was tested using large sample of data registered by a dedicated detection setup enabling sampling of signals with 50-ps intervals. Experimental setup provided irradiation of a chosen position in the plastic scintillator strip with annihilation gamma quanta.