Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Jerzy Kasprzyk x
Clear All Modify Search
Open access

Jerzy Kasprzyk and Jarosław Figwer

Abstract

In the paper an intelligent software package MULTI-EDIP for computer-aided identification of multivariate signals and systems is presented. Purposes and main requirements for computer-aided identification are discussed. A summary of the most important MULTI-EDIP services with a focus on expert advice is described. An example of using the package in electroacoustic plant identification for active noise control system development is presented.

Open access

Jerzy Kasprzyk, Piotr Krauze, Sebastian Budzan and Jaroslaw Rzepecki

Abstract

The efficiency of vibration control in an automotive semi-active suspension system depends on the quality of information from sensors installed in the vehicle, including information about deflection of the suspension system. The control algorithm for vibration attenuation of the body takes into account its velocity as well as the relative velocity of the suspension. In this paper it is proposed to use the Linear Variable Differential Transformer (LVDT) unit to measure the suspension deflection and then to estimate its relative velocity. This approach is compared with a typical solution implemented in such applications, where the relative velocity is calculated by processing signals acquired from accelerometers placed on the body and on the chassis. The experiments performed for an experimental All-Terrain Vehicle (ATV) confirm that using LVDT units allows for improving ride comfort by better vibration attenuation of the body.

Open access

Beata Zboromirska-Wnukiewicz, Witold Wnukiewicz, Krzysztof Kogut, Jan Wnukiewicz, Roman Rutowski, Jerzy Gosk and Krzysztof Kasprzyk

Abstract

Recent advances in general medicine led to the development of biomaterials. Implant material should be characterized by a high biocompatibility to the tissue and appropriate functionality, i.e. to have high mechanical and electrical strength and be stable in an electrolyte environment – these are the most important properties of bioceramic materials. Considerations of biomaterials design embrace also electrical properties occurring on the implant-body fluid interface and consequently the electrokinetic potential, which can be altered by modifying the surface of the implant. In this work, the surface of the implants was modified to decrease the risk of infection by using metal colloids. Nanocolloids were obtained using different chemical and electrical methods. It was found that the colloids obtained by physical and electrical methods are more stable than colloids obtained by chemical route. In this work the surface of modified corundum implants was investigated. The implant modified by nanosilver, obtained by electrical method was selected. The in vivo research on animals was carried out. Clinical observations showed that the implants with modified surface could be applied to wounds caused by atherosclerotic skeleton, for curing the chronic and bacterial inflammations as well as for skeletal reconstruction surgery.