Search Results

You are looking at 1 - 5 of 5 items for

  • Author: Jasna Hrenović x
Clear All Modify Search
Open access

Tomislav Ivanković and Jasna Hrenović

Surfactants in the Environment

Surfactants are a diverse group of chemicals that are best known for their wide use in detergents and other cleaning products. After use, residual surfactants are discharged into sewage systems or directly into surface waters, and most of them end up dispersed in different environmental compartments such as soil, water or sediment. The toxic effects of surfactants on various aquatic organisms are well known. In general, surfactants are present in the environment at levels below toxicity and in Croatia below the national limit. Most surfactants are readily biodegradable and their amount is greatly reduced with secondary treatment in wastewater treatment plants. The highest concern is the release of untreated wastewater or wastewater that has undergone primary treatment alone. The discharge of wastewater polluted with massive quantities of surfactants could have serious effects on the ecosystem. Future studies of surfactant toxicities and biodegradation are necessary to withdraw highly toxic and non-biodegradable compounds from commercial use and replace them with more environmentally friendly ones.

Open access

Tomislav Ivanković, Ivana Goić-Barišić and Jasna Hrenović

Abstract

The aim of this study was to determine the susceptibility of hospital and environmental Acinetobacter baumannii isolate biofilms on ceramics and glass to common disinfectants benzalkonium chloride and chlorhexidine. For this purpose we developed a new method for biofilm cultivation and quantification on ceramics. The biofilm bacteria were more resistant to disinfectants than the planktonic populations, as more than 50 % of the biofilm population and none of the planktonic population survived 5-minute exposure. Furthermore, biofilm populations on ceramic tiles were significantly more resistant than those on glass coverslips, even though the amount of biofilm was practically the same on ceramics and glass. The reason for reduced susceptibility of A. baumannii biofilms on ceramics may be related to surface/disinfection interactions. Our findings suggest that biofilms on ceramic surfaces can be an important source of A. baumannii infection in hospital environments.

Open access

Ivana Gudelj, Jasna Hrenović, Tibela Dragičević, Frane Delaš, Vice Šoljan and Hrvoje Gudelj

Azo Boje, Njihov Utjecaj Na Okoliš I Potencijal Biotehnološke Strategije Za Njihovu Biorazgradnju I Detoksifikaciju

Intenzivan industrijski razvoj popraćen je sve većom kompleksnošću sastava otpadnih voda, što u smislu učinkovite zaštite okoliša i održivog razvoja nalaže potrebu pospješivanja kvalitete postojećih te uvođenjem novih postupaka obrade otpadnih voda, kao iznimno važnog čimbenika u interakciji čovjeka i okoliša. Posebnu znanstveno-tehnološku pozornost zahtijevaju novosintetizirani ksenobiotici, poput azo-boja, koji su u prirodi veoma teško razgradivi. Azo-boje podložne su bioakumulaciji, a zbog alergijskih, kancerogenih, mutagenih i teratogenih svojstava nerijetko su prijetnja zdravlju ljudi i očuvanju okoliša. Primjenu fizikalnokemijskih metoda za uklanjanje azo-boja iz otpadnih voda često ograničavaju visoke cijene, potrebe za odlaganjem nastalog štetnog mulja ili nastanak toksičnih sastojaka razgradnje. Biotehnološki postupci su, zbog mogućnosti ekonomične provedbe i postizanja potpune biorazgradnje, a time i detoksifikacije, sve zastupljeniji u obradi svih vrsta otpadnih voda, pa tako i onih koje sadržavaju azo-boje.

Open access

Maja Mejdandžić, Tomislav Ivanković, Martin Pfannkuchen, Jelena Godrijan, Daniela Marić Pfannkuchen, Jasna Hrenović and Zrinka Ljubešić

Abstract

Every surface that is immersed in seawater becomes rapidly covered with an unavoidable biofilm. Such biofilm formation, also known as fouling, is a complex multistage process and not yet thoroughly investigated. In this study, the succession of diatoms and bacteria was investigated during a one month exposure on an artificial substrate of plexiglass (polymer of methyl methacrylate) mounted above the seafloor at a depth of 5 m. For biofilm analyses, the fouling was investigated using selective agar plates, epifluorescence, light and electronic microscopy, as well as high performance liquid chromatography (HPLC) pigment analysis. During biofilm development, the abundance of all biofilm components increased and reached maximum values after a one month exposure. In the bacterial community, heterotrophic marine bacteria were dominant and reached 1.96 ± 0.79 × 104 colony forming units (CFU) cm-2. Despite the fact that faecal coliforms and intestinal enterococci were detected in the water column, faecal coliforms were not detected in the biofilm and intestinal enterococci appeared after one month of exposure but in the negligible number of 60 ± 10 CFU cm-2. The phototrophic component of the biofilm was dominated by diatoms and reached a concentration of 6.10 × 105 cells cm-2, which was supported by pigment analysis with fucoxanthin as dominant pigment in a concentration up to 110 ng cm-2. The diatom community was dominated by Cylindrotheca closterium and other pennate benthic diatoms. A detailed taxonomic analysis by electronic microscopy revealed 30 different taxa of diatoms. The study confirmed that a plexiglass surface in a marine environment is susceptible to biofouling within 30 days of contact. Furthermore, the co lonization process sequence firstly involved bacteria and cyanobacteria, and secondly diatoms, which together formed a primary biofilm in the sea.

Open access

Tomislav Ivanković, Jasna Hrenović, Grigorios Itskos, Nikolaos Koukouzas, Davor Kovačević and Jelena Milenković

Abstract

Wood fly ash is an industrial by-product of the combustion of different wood materials and is mostly disposed of as waste on landfills. In our preliminary experiments, wood ash exhibited antibacterial activity against urban wastewater bacteria and we focused on wood fly ash as a potential substrate for wastewater disinfection. The addition of ash at a concentration of 10 g L-1 (1 %) caused an instant increase of pH in urban wastewater and landfill leachate. High pH (10.1-12.7) inactivated bacterial populations in the wastewater and the removal of faecal coliforms and intestinal enterococci after 6 h of contact was 100 % (below the detection limit; <1 CFU per mL) with the most efficient ash sample (ash from combustion of beech) both in urban wastewater and landfill leachate. Properly chosen wood fly ash, i.e. one that tends to increase the pH to the greatest extent, proved to be a very effective disinfection substrate. Considering that water treated with wood ash has a high pH and needs to be neutralised before discharge, ash would be suitable for disinfection of leachates when smaller volumes are treated