Search Results

1 - 2 of 2 items

  • Author: Jarosław Müller x
Clear All Modify Search

Abstract

The aim of the research was to design and validate the prototype of a device developed to improve the quality of indoor air by supporting the natural ventilation in building. A CO2 sensor and thermo-hygrometer were used to measure the physical parameters of the indoor air. The developed device is based on the Raspberry Pi single-board-computer (SBC) and optical sensors. The prototype casing was made using 3D printing technology. The software was written using the Python 2.7 programming language. The key algorithm of control uses fuzzy logic. The effectiveness of the developed device has been confirmed. The use of the device enabled improvement of the indoor air quality. The presented device may be a solution to improve the indoor air quality by supporting the ventilation system.

Abstract

The paper presents the results of modelling airflow for ventilation of a single-family house with an area of 180 m2. The building was equipped with mechanical ventilation with the possibility of varying the airflow. The airflow was calculated as a function of carbon dioxide concentration. The presence of people in selected rooms was an internal source of carbon dioxide. In order to properly design of a ventilation system and then model the contamination level, ContamW software was used. The year-long cost analysis was carried out for the installation working with variable airflow (day, night). The analysis took into account the price of the electricity used by the fans of Air Handling Unit and meteorological data to estimate the power input to the heater of the Unit. Different scenarios of system operation were included as an input data in order to find a difference in energy consumption. The calculations were to answer the question of whether it is necessary to apply expensive and advanced system that enables individual control of the airflow in every room or use the simple control of the central unit to vary the airflow in the ventilation system of single-family houses. The difference in operating cost between the system that maintains 800 and 600 ppm reaches 100 % and demonstrates the need of simple demand controlled ventilation system.