Search Results

1 - 5 of 5 items

  • Author: Jana Jablonská x
Clear All Modify Search

Abstract

The article deals with experimental investigation of water cavitation in the convergent-divergent nozzle of rectangular cross-section. In practice, a quick and simple determination of cavitation is essential, especially if it is basic cavitation or cavitation generated additionally by the air being sucked. Air influences the formation, development and size of the cavity area in hydraulic elements. Removal or reduction of the cavity area is possible by structural changes of the element. In case of the cavitation with the suction air, it is necessary to find the source of the air and seal it. The pressure gradient, the flow, the oxygen content in the tank, and hence the air dissolved in the water, the air flow rate, the noise intensity and the vibration velocity on the nozzle wall were measured on laboratory equipment. From the selected measurements the frequency spectrum of the variation of the water flow of the cavity with cavitation without air saturation and with air saturation was compared and evaluated.

Abstract

The strictly protected natural area of Sucha Bela Gorge, located in the Slovak Paradise National Park, Slovakia, is exposed to environmental degradation by heavy tourist loads. Although educational and technical measures have been put in place, there is ongoing debate whether and how to limit the intensity of tourist visits. This study evaluates the ability of the trail leading through the gorge to resist trampling disturbance and to minimise the environmental impacts in the wider area of Sucha Bela by keeping tourists from moving off the designated areas. Aspects of trail layout, geological and geomorphological structures, terrain altering during the summer season, and acceptable tourist flow were investigated.The results show the current development would be acceptable in the case of limited off-trail movement. It therefore seems appropriate to review the trail allocation and marking, and to focus on environmental education rather than on limiting tourist visits.

Abstract

Partially surface wetting has a great influence on friction losses in the fluid flow in both the pipeline system and the complex shape of hydraulic elements. In many hydraulic elements (valves, pump impellers), cavitation is generated, which significantly changes the hydraulic flow parameters, so the last part of the article is devoted to the mathematical solution of this phenomena and evaluates the impact of wall wetting on the size and shape of the cavitation area which appears in the nozzle and in small gaps at special conditions. If the cavitation appears e. g. near the wall of pipes, the blades of turbine or a pump, then it destroys the material surface. On the basis of this physical experiment (nozzle), a two-dimensional (2D) mathematical cavitation model of Schnerr-Sauer was made and calculated shape and size of the cavitation region was compared with the experiment. Later this verified model of cavitation was used for cavitation research flow with partial surface wetting. The pressure drop and the size of the cavitation area as it flows from partially surface wetting theory was tested depending on the adhesion coefficient.

Abstract

The article deals with the cavitation phenomenon affected by full and partial wetting of the wall. For the numerical computation of flow in the Laval nozzle the Schnerr-Sauer cavitation model was tested and was used for cavitation research of flow within the nozzle considering partial surface wetting. The coefficient of wetting for various materials was determined using experimental, theoretical and numerical methods of fluid flow due to partial surface wetting.

Abstract

Cavitation is a phenomenon with both positive and negative effects and with dynamic manifestations in hydraulic, food, chemical and other machinery. This article deals with the detection and dynamic behavior of cavitation clouds in water flows through a rectangular cross-section convergent-divergent nozzle. Cavitation was measured by methods applicable in engineering practice. Pressure, flow rate, noise, vibration, and amount of air dissolved in the liquid were measured and cavitation region was recorded with a high-speed camera. Evaluation of acquired images in connection with measured pressure pulsations and mechanical vibrations was performed with the use of the FFT method. In certain cases, dimensionless parameters were used to generalize the measurements. The results will be used to specify multiphase mathematical cavitation model parameters.