Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Jan Matuszewski x
Clear All Modify Search
Open access

Jan Matuszewski and Wojciech Grzywacz

Abstract

The article presents navigation system project operating on the principle scene matching area correlation (SMAC), using a digital camera, an MEMS e-compass sensor and an ultrasonic ranging module. Systems of this type are used as a component of advanced integrated navigation systems in view of its autonomy and capability of localizing aircrafts with high accuracy and precision. Steering and display of information are implemented using a computer application designed in Matlab programming environment. The object’s location is fixed, using discrete cross-correlation function through matching of the registered terrain image to digital orthophotomap.

The article describes operations directly related to digital image processing, its implementation methods, a structural system design with explanations of each of the functional elements and presents devices used to build a complete integrated measurement unit model. It was used for the effectiveness measurement of determining the location of an object depending on the changes of angle and height of the flight as well as the luminance and noise level in a registered image. The measurements methodology was described which also includes an analysis of the results, an effectiveness evaluation and potential development directions of the designed system.

Open access

Stanisław Konatowski, Piotr Kaniewski and Jan Matuszewski

Abstract

Several types of nonlinear filters (EKF – extended Kalman filter, UKF – unscented Kalman filter, PF – particle filter) are widely used for location estimation and their algorithms are described in this paper. In the article filtering accuracy for non-linear form of measurement equation is presented. The results of complex simulations that compare the quality of estimation of analyzed non-linear filters for complex non-linearities of state vector are presented. The moves of maneuvering object are described in two-dimensional Cartesian coordinates and the measurements are described in the polar coordinate system. The object dynamics is characterized by acceleration described by the univariate non-stationary growth model (UNGM) function. The filtering accuracy was evaluated not only by the root-mean-square errors (RMSE) but also by statistical testing of innovations through the expected value test, the whiteness test and the WSSR (weighted sum squared residual) test as well. The comparison of filtering quality was done in the MATLAB environment. The presented results provide a basis for designing more accurate algorithms for object location estimation.