Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Jakub Bazarnik x
Clear All Modify Search
Open access

Jozef Vozár, Ján Spišiak, Anna Vozárová, Jakub Bazarnik and Ján Krái

Abstract

The paper presents new major and trace element and first Sr-Nd isotope data from selected lavas among the Permian basaltic andesite and basalts of the Hronicum Unit and the dolerite dykes cutting mainly the Pennsylvanian strata. The basic rocks are characterized by small to moderate mg# numbers (30 to 54) and high SiO2 contents (51-57 wt. %). Low values of TiO2 (1.07-1.76 wt. %) span the low-Ti basalts. Ti/Y ratios in the dolerite dykes as well as the basaltic andesite and basalt of the 1st eruption phase are close to the recommended boundary 500 between high-Ti and low-Ti basalts. Ti/Y value from the 2nd eruption phase basalt is higher and inclined to the high-Ti basalts. In spite of this fact, in all studied Hronicum basic rocks Fe2O3* is lower than 12 wt. % and Nb/La ratios (0.3-0.6) are low, which is more characteristic of low-Ti basalts. The basic rocks are characterized by Nb/La ratios (0.56 to 0.33), and negative correlations between Nb/La and SiO2, which point to crustal assimilation and fraction crystallization. The intercept for Sr evolution lines of the 1st intrusive phase basalt is closest to the expected extrusions age (about 290 Ma) with an initial 87Sr/86Sr ratio of about 0.7054. Small differences in calculated values ISr document a partial Sr isotopic heterogeneity source (0.70435-0.70566), or possible contamination of the original magma by crustal material. For Nd analyses of the three samples, the calculated values εCHUR (285 Ma) are positive (from 1.75 to 3.97) for all samples with only subtle variation. Chemical and isotopic data permit us to assume that the parental magma for the Hronicum basic rocks was generated from an enriched heterogeneous source in the subcontinental lithospheric mantle.

Open access

Karolina Gołuchowska, Abigail K. Barker, Jarosław Majka, Maciej Manecki, Jerzy Czerny and Jakub Bazarnik

Abstract

The purpose of this study is to determine the role of metamorphism and thereby identify the preserved magmatic signature in metavolcanics from Wedel Jarlsberg Land in southwestern Svalbard. Samples have been collected from late Precambrian metavolcanics occurring within metasedimentary rocks of the Sofiebogen Group, as well as dikes cutting older metasedimentary rocks of the Deilegga Group. The volcanic rocks were metamorphosed under greenschist facies conditions during the Caledonian Orogeny. To investigate the role of metamorphism, we present petrography, major and trace element geochemistry, and use factor analysis as a tool to identify correlations that correspond to primary magmatic signals.

The metavolcanics are classified as subalkaline basalt to basaltic andesite and they contain relicts of primary clinopyroxene and plagioclase. The metamorphic minerals are actinolite, secondary plagioclase, chlorite and minerals belonging to the epidote group. Major element variations are highly scattered with no obvious trends observed. The HFSE and REE show strong trends attributed to fractional crystallization. The LILE, Th and La show elevated contents in some samples.

Factor analysis shows that the HFSE and REE are well correlated. The LILE form a separate well correlated group, while the major elements are not correlated, except for Na2O, Fe2O3 and CaO. The lack of correlation for major elements, as well as the lack of observed fractional crystallization trends between these elements suggests that they were modified by metamorphism. The strong correlation of HFSE and REE reflects the original geochemical signal generated by magmatic processes. The correlation of the LILE is consistent with their elevated composition implying the influence of crustal contamination processes, and though some variability is likely superimposed due to metamorphism, the primary magmatic record is not completely destroyed. We conclude that the HFSE and REE are not influenced by metamorphic processes and therefore provide robust records of magmatic processes.