Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Jae-Yeon Kim x
Clear All Modify Search
Open access

Yun-Hyuk Choi, Hye-Yeon Choi, Chi-Seung Lee, Myung-Hyun Kim and Jae-Myung Lee


In this paper, a method to estimate ice loads as a function of the buttock angle of an icebreaker is presented with respect to polycrystalline freshwater ice. Ice model tests for different buttock angles and impact velocities are carried out to investigate ice pressure loads and tendencies of ice pressure loads in terms of failure modes. Experimental devices were fabricated with an idealized icebreaker bow shape, and medium-scale ice specimens were used. A dry-drop machine with a freefall system was used, and four pressure sensors were installed at the bottom to estimate ice pressure loads. An estimation equation was suggested on the basis of the test results. We analyzed the estimation equation for design ice loads of the International Association of Classification Societies (IACS) classification rules. We suggest an estimation equation considering the relation between ice load, buttock angle, and velocity by modifying the equations given in the IACS classification rules.

Open access

Jae-Yeon Kim, Jung-Woo Hwang, Hye-Young Kim, Seung-Mi Lee, Woo-Sang Jung and Jai-Won Byeon


Double-pass Friction Stir Processing (FSP) was applied to fabricate an AZ31/CNT nano-composite for surface hardening of lightweight structural components. The effects of double-pass FSP as well as groove depth (i.e., volume fraction of CNT) on the CNT distribution, dynamically recrystallized grain size, and resulting microhardness were studied. Double-pass FSP was performed for the CNT-filled plate-type specimen with different groove depths of 2, 3, and 4 mm. By applying double-pass FSP, the average size of CNT clusters decreased, implying a more homogeneous distribution. Compared with the FSPed specimen without CNT, grain size was refined from 19 μm to 3 μm and microhardness increased from 52 Hv to 83 Hv (i.e., 71% increase).