Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Jacek Rzadkiewicz x
Clear All Modify Search
Open access

Ewa Laszynska, Slawomir Jednorog, Adam Ziolkowski, Michal Gierlik and Jacek Rzadkiewicz

Abstract

The neutron emission rate is a crucial parameter for most of the radiation sources that emit neutrons. In the case of large fusion devices the determination of this parameter is necessary for a proper assessment of the power release and the prediction for the neutron budget. The 14 MeV neutron generator will be used for calibration of neutron diagnostics at JET and ITER facilities. The stability of the neutron generator working parameters like emission and angular homogeneity affects the accuracy of calibration other neutron diagnostics. The aim of our experiment was to confirm the usefulness of yttrium activation method for monitoring of the neutron generator SODERN Model: GENIE 16. The reaction rate induced by neutrons inside the yttrium sample was indirectly measured by activation of the yttrium sample, and then by means of the γ-spectrometry method. The pre-calibrated HPGe detector was used to determine the yttrium radioactivity. The emissivity of neutron generator calculated on the basis of the measured radioactivity was compared with the value resulting from its electrical settings, and both of these values were found to be consistent. This allowed for a positive verification of the reaction cross section that was used to determine the reaction rate (6.45 × 10−21 reactions per second) and the neutron emission rate (1.04 × 108 n·s−1). Our study confirms usefulness of the yttrium activation method for monitoring of the neutron generator.

Open access

Pawel Sibczynski, Andrzej Broslawski, Aneta Gojska, Vasili Kiptily, Stefan Korolczuk, Roch Kwiatkowski, Slawomir Mianowski, Marek Moszyński, Jacek Rzadkiewicz, Lukasz Swiderski, Adam Szydlowski and Izabella Zychor

Abstract

LaBr3:Ce,CeBr3 and GAGG:Ce scintillators were investigated and the determined characteristics were compared with those obtained for the well-known and widely used CsI:Tl and NaI:Tl crystals. All the detectors were of the same size of 10 × 10 × 5 mm3. The aim of this test study was to single out scintillation detectors most suitable for γ-ray spectrometry and γ-ray emission radial profile measurements in high-temperature plasma experiments. Decay time, energy resolution, non-proportionality and full energy peak detection efficiency ere measured for γ-ray energies up to 1770 keV. Due to their good energy resolution, short decay time and high detection efficiency for MeV gamma rays, LaBr3:Ce and CeBr3 scintillators are proposed as the best candidates for use especially under conditions of high count rates, which are expected in the forthcoming DT experiments.