Search Results

You are looking at 1 - 10 of 50 items for

  • Author: J.-H. Kim x
Clear All Modify Search
Open access

J.H. Kim and J.-H. Lee

Abstract

In order to fabricate graphite nanosheets from graphite flakes, edge-functionalized graphite nanosheets were prepared by a functionalization method using phthalic acid as the molecule to be grafted. A polyphosphoric acid/P2O5 solution containing graphite and phthalic acid were heated at different temperatures for 72 h in a nitrogen atmosphere. It was confirmed by transmission electron microscopy and atomic force microscopy that the resultant phthalic acid-functionalized graphite nanosheets had a large surface area of 20.69 μm2 in average and an average thickness of 1.39 nm. It was also found by X-ray diffractometry and Fourier transform infrared spectroscopy (FT-IR) analysis that the functionalization caused the formation of C=O bonds at the edges of the graphite nanosheets. The yield from this functionalization method was found to be dependent on the reaction temperature, only when it is between 70 and 130°C, because of the dehydration of phthalic acid at higher temperatures. This was confirmed by FT-IR analysis and the observation of low thermal energies at low temperatures.

Open access

J.-H. Pee, G.H. Kim, H.Y. Lee and Y.J. Kim

Abstract

Decomposition promoting factors and extraction process of tungsten carbide and tungstic acid powders in the zinc decomposition process of tungsten scraps which are composed mostly of tungsten carbide and cobalt were evaluated. Zinc volatility was suppressed by the enclosed graphite crucible and zinc volatilization pressure was produced in the reaction graphite crucible inside an electric furnace for ZDP (Zinc Decomposition Process). Decomposition reaction was done for 2hours at 650°, which 100% decomposed the tungsten scraps that were over 30 mm thick. Decomposed scraps were pulverized under 75μm and were composed of tungsten carbide and cobalt identified by the XRD (X-ray Diffraction). To produce the WC(Tungsten Carbide) powder directly from decomposed scraps, pulverized powders were reacted with hydrochloric acid to remove the cobalt binder. Also to produce the tungstic acid, pulverized powders were reacted with aqua regia to remove the cobalt binder and oxidize the tungsten carbide. Tungsten carbide and tungstic acid powders were identified by XRD and chemical composition analysis.

Open access

J.-H. Pee, G.H. Kim, H.Y. Lee and Y.J. Kim

Abstract

Typical oxidation process of tungsten scraps was modified by the rotary kiln with oxygen burner to increase the oxidation rate of tungsten scraps. Also to accelerate the solubility of solid oxidized products, the hydrothermal reflux method was adapted. By heating tungsten scraps in rotary kiln with oxygen burner at around 900° for 2hrs, the scraps was oxidized completely. Then oxidized products (WO3 and CoWO4) was fully dissolved in the solution of NaOH by hydrothermal reflux method at 150° for 2hrs. The dissolution rate of oxidized products was increased with increasing the reaction temperature and concentration of NaOH. And then CaWO4 and H2WO4 could be generated from the aqueous sodium tungstate solution. Ammonium paratungstate (APT) also could be produced from tungstic acid using by aqueous ammonium solution. The morphologies (cubic and plate types) of APT was controlled by the stirring process of purified solution of ammonium paratungstate.

Open access

Y.-K. Kim, J.-H. Kim, J.-H. Gwon and K.-A. Lee

Abstract

This study attempted to manufacture an ODS alloy by combining multiple milling processes in mechanical alloying stage to achieve high strength and fracture elongation. The complex milling process of this study conducted planetary ball milling, cryogenic ball milling and drum ball milling in sequential order, and then the microstructure and tensile deformation behavior were investigated after additional heat treatment. The oxide particles distributed within the microstructure were fine oxide particles of 5~20 nm and coarse oxide particles of 100~200 nm, and the oxide particles were confirmed to be composed of Cr, Ti, Y and O. Results of tensile tests at room temperature measured yield strength, tensile strength and elongation as 1320 MPa, 2245 MPa and 4.2%, respectively, before heat treatment, and 1161 MPa, 2020 MPa and 5.5% after heat treatment. This results indicate that the ODS alloy of this study gained very high strengths compared to other known ODS alloys, allowing greater plastic zones.

Open access

W.J. Kim, H.-H. Nguyen, H.Y. Kim, M.-T. Nguyen, H.S. Park and J.-C. Kim

Abstract

Selective laser sintering (SLS) is a type of laminating sintering technique, using CO2 laser with (metal, polymer, and ceramic) powders. In this result, the flake SUS 316L was used to achieve a high porous product, and compare to spherical type. After SLS, the porosity of flake-type sample with 34% was quite higher than that of the spherical-type one that had only 11%. The surface roughness of the flake SLS sample were also investigated in both inner and surface parts. The results show that the deviation of the roughness of the surface part is about 64.40μm, while that of the internal one was about 117.65μm, which presents the containing of high porosity in the uneven surfaces. With the process using spherical powder, the sample was quite dense, however, some initial particles still remained as a result of less energy received at the beneath of the processing layer.

Open access

D.H. Shim, S.S. Jung, H.S. Kim, H. Cho, J.K. Kim, T.G. Kim and S.J. Yoon

Abstract

Zirconia matrix ZrO2/CNT composite materials reinforced with multiwall carbon nanotubes were fabricated using a spark plasma sintering technique. The effects of the amount of CNTs addition, sintering temperature and sintering pressure on the properties of the resulting ZrO2/CNT composites were examined. 0 to 9 vol. % CNTs were dispersed in zirconia powder, and the resulting mixture was sintered. The electrical conductivity, hardness, flexural strength, and density were measured to characterize the composites. The friction and wear properties of the composites were also tested. The flexural strength and friction coefficient of the composites were improved with up to 6 vol.% of CNT addition and the flexural strength showed a close relationship with the relative density of the composite. The electrical conductivity increased with increasing proportion of the CNTs, but the efficiency was reduced at more than 6 vol.% CNTs.

Open access

J.-H. Ha, Y.-H. Park and I.-H. Song

Abstract

Porous ceramic membranes prepared from natural materials such as diatomite, have lately attracted great interest in industrial applications due to their cost-effectiveness. In this study, we attempted to prepare an alumina coating to be deposited over a sintered diatomite-kaolin composite support layer in order to reduce the largest pore size to below 0.4 μm; such a coating could be potentially used in water treatment applications for bacterial removal.

Open access

K.C. Bae, J.J. Oak, Y.H. Kim and Y.H. Park

Abstract

To investigate the effect of Fe content on the correlation between the microstructure and mechanical properties in near-b titanium alloys, the Ti-5Al-5Mo-5V-1Cr-xFe alloy system has been characterized in this study. As the Fe content increased, the number of nucleation sites and the volume fraction of the α phase decreased. We observed a significant difference in the shape and size of the α phase in the matrix before and after Fe addition. In addition, these morphological deformations were accompanied by a change in the shape of the α phase, which became increasingly discontinuous, and changed into globular-type α phase in the matrix. These phenomena affected the microstructure and mechanical properties of Ti alloys. Specimen #2 exhibited a high ultimate tensile strength (1071 MPa), which decreased with further addition of Fe.

Open access

D.-H. Kim, T.-J. Kim and S.-G. Lim

Abstract

In this study, mechanical properties and microstructures of extruded aluminum matrix composites were investigated. The composite materials were manufactured by two step methods: powder metallurgy (mixture of aluminum powder and carbon fiber using a turbular mixer, pressing of mixed aluminum powder and carbon fiber using a cold isostatic pressing) and hot extrusion of pressed aluminum powder and carbon fiber. For the mixing of Al powder and carbon fibers, aluminum powder was used as a powder with an average particle size of 30 micrometer and the addition of the carbon fibers was 50% of volume. In order to make mixing easier, it was mixed under an optimal condition of turbular mixer with a rotational speed of 60 rpm and time of 1800s. The process of the hot-extrusion was heated at 450°C for 1 hour. Then, it was hot-extruded with a condition of extrusion ratio of 19 and ram speed of 2 mm/s. The microstructural analysis of extruded aluminum matrix composites bars and semi-solid casted alloys were carried out with the optical microscope, scanning electron microscope and X-ray diffraction. Its mechanical properties were evaluated by Vickers hardness and tensile test.

Open access

D.-J. Kim, K.M. Kim, J.H. Shin, Y.M. Cheong, E.H. Lee, G.G. Lee, S.W. Kim, H.P. Kim, M.J. Choi, Y.S. Lim and S.S. Hwang

Abstract

Fast water flow facilitates ferrous ion transport leading to flow accelerated corrosion (FAC) of carbon steel and the possibility of a large accident through a failure of a secondary pipe in a nuclear power plant. Ion transport is directly linked to oxide properties such as the thickness, chemical composition and porosity. This work deals with a precise observation of the cross section of the corroded specimen focusing on an oxide passivity and its thickness using SEM (scanning electron microscope) and TEM (transmission electron microscope) as well as an apparent weight loss and a surface observation for the specimens corroded using a rotating cylindrical electrode autoclave system in pure water of pH 7 at 150°C having dissolved oxygen below 1 ppb within a flow rate range of 0 to 10 m/s. The Cr content in steel was changed from 0.02 to 2.4 wt%. Increasing the Cr content in the alloy, the FAC rate and oxide thickness decreased. The oxide porosity tends to decrease with the Cr content and immersion time owing to the development of Cr containing oxide. The oxidation behavior is not changed with the immersion time.