Search Results

You are looking at 1 - 2 of 2 items for

  • Author: J.-Gon. Kim x
Clear All Modify Search
Open access

S. Yang and J.-Gon. Kim

Abstract

In future, more mobile devices with different frequencies will be used at the same time. Therefore, it is expected that the trouble caused by wave interference between devices will be further intensified. In order to prevent this trouble, investigation of selective frequency transmission or absorption material is required. In this paper, magnetic properties of nickel-zinc-copper ferrite nano powder was researched as wave absorber. (Nia-Znb)xCu1-xFe2O4(NZCF) nanoparticles were fabricated by the sol-gel method. The influence of copper substitution on lattice parameter change was analyzed by X-ray diffraction (XRD), particle size was analyzed by scanning electron microscopy (SEM), and Magnetic properties analyzed by vibrating sample magnetometer (VSM). The NZCF and Nickel-zinc ferrite (NZF) lattice parameter difference was 0.028 Å and particle size was calculated as 30 nm with the XRD peak. The VSM results of (Ni0.3-Zn0.3)0.6Cu1-0.6Fe2O4 annealed sample at 700°C for 3hous were 58.5 emu/g (Ms), 22.8 Oe (Hc). It was the most suitable magnetic properties for wave absorber in this investigation.

Open access

S. Yang, K.-Pil. Jeong, S.-Y. Park and J.-Gon. Kim

Abstract

Due to the rapid development of the information communication industries, it is expected that next-generation mobile communication devices in the data communication environment will be used at the same time in the L~X band (1–12 GHz). To mutual electric wave interference prevention, research on wave absorbers in L~X band is needed. In this paper, barium ferrite was researched as L~X band wave absorber. The Barium ferrite (BaM, Ba ferrite) substituted by divalent ions (Co2+, Cu2+, Ni2+, Zn2+) and tetravalent ion (Ti4+). The substituted Ba ferrite nanoparticles were fabricated by sol-gel process. Lattice parameter, particle size, magnetic properties, and reflection loss were analyzed by X-ray diffraction (X-RD), a Vibrating Sample Magnetometer (VSM), and a Network Analyzer. Lattice parameter of Ba ferrite was changed 0.0005 to 0.0078 Å in a-b direction, and 0.0187 to 0.0445 Å in c-direction by substituted elements, and it influenced on magnetic anisotropy. In addition, Co-Ti substitution elements influenced that coercive force decrease 5,739 to 2,240 Oe. Moreover, reflection loss frequencies were shifted from 16.3 GHz to 14.4 and 17.4 GHz by substituted elements Co-Ti and Zn-Ti.