Search Results

1 - 7 of 7 items

  • Author: J. Wasserbauer x
Clear All Modify Search
Bimolecular mechanism of electroless coating of magnesium alloys

Abstraktní

Tento článek se zabývá studiem možného mechanizmu bezproudého niklování.

Pro bezproudou depozici Ni-P povlaku byla použita hořčíková slitina AZ91, kdy primárním cílem výzkumu byla optimalizace postupu niklování pro tuto slitinu. Při optimalizaci niklovací lázně bylo u vzorku B23 použito poloviční množství redukčního činidla. Dosavadní výzkum v této oblasti předpokládá monomolekulární mechanizmus, který odpovídá reakci prvního řádu. U všech Ni-P povlaků byl pomocí EDS analýzy na elektronovém rastrovacím mikroskopu stanoven obsah fosforu a niklu. Následně byly provedeny výpočty, které potvrdily pokles poměru Ni/P ve vyloučeném povlaku o jednu čtvrtinu. Tato skutečnost by mohla odpovídat bimolekulárnímu mechanizmu bezproudého niklování.

Open access
Improvement of bio-compatible AZ61 magnesium alloy corrosion resistance by fluoride conversion coating

Abstract

Magnesium and its alloys are perspective bio-degradable materials used mainly due to their mechanical properties similar to those of mammal bones. Potential problems in utilization of magnesium alloys as bio-materials may relate to their rapid degradation which is associated with resorption problems and intensive hydrogen evolution. These problems can be eliminated by magnesium alloys surface treatment. Therefore, this work aims with analysis of the influence of fluoride conversion coating on corrosion characteristics of magnesium alloy. Unconventional technique by insertion of wrought magnesium alloy AZ61 into molten Na[BF4] salt at temperature of 450 °C at different treatment times was used for fluoride conversion coating preparation. The consequent effect of the coating on magnesium alloy corrosion was analyzed by means of linear polarization in simulated body fluid solution at 37 ± 2 °C. The obtained results prove that this method radically improve corrosion resistance of wrought AZ61magnesium alloy even in the case of short time of coating preparation.

Open access
Corrosion resistance of the biodegradable ZE41 magnesium alloy treated by unconventional fluoride conversion coating

Abstract

Magnesium based alloys are very promising material to be used mainly for biodegradable implants in medical applications. However, due to their very low corrosion resistance in the environment of in vivo is their use limited. Increase of the corrosion resistance of magnesium alloys in vivo can be achieved, for example, by a suitable choice of surface treatment while the biocompatibility must be ensured. Fluoride conversion coatings meet these requirements. Unconventional fluoride conversion coating was prepared on ZE41 magnesium alloy by dipping the magnesium alloy into the Na[BF4] salt melt at 450 °C for 0.5; 2 and 8 h. The morphology and thickness of the prepared fluoride conversion coatings were investigated as well as the corrosion resistance of the treated and untreated ZE41 magnesium alloy specimens. The corrosion resistance of the untreated and treated ZE41 magnesium alloy was investigated using electrochemical impedance spectroscopy in the environment of the simulated body fluids at 37 ± 2 °C. The obtained results showed a positive influence of the fluoride conversion coating on the corrosion resistance of the ZE41 magnesium alloy.

Open access
Corrosion behavior of wrought magnesium alloys AZ31 and AZ61 in Hank’s solution

Abstract

Corrosion behavior of wrought magnesium alloys AZ31 and AZ61 was studied in Hank’s solution. Potentiodynamic curves measured after short-term of exposure showed higher corrosion resistance of AZ31 magnesium alloy in comparison with AZ61 magnesium alloy. On the contrary, long-term tests measured by electrochemical impedance spectroscopy showed higher corrosion resistance of AZ61 magnesium alloy in comparison with AZ31 magnesium alloy.

Open access
Characterization of Ni-P coating prepared via electroless deposition on AZ31 magnesium alloy

Abstract

This work deals with the characterization of Ni–P coating prepared via electroless deposition on wrought AZ31magnesium alloy. For the application of electroless deposition was proposed and optimized a suitable pretreatment process of magnesium alloy surface followed by Ni–P coating in the nickel bath. The chemical composition of Ni–P based coating was characterized using the scanning electron microscope with chemical composition analysis. Next, physico-chemical properties and mechanical characteristics of Ni–P coating were evaluated. The mechanism of corrosion degradation of the coating and the substrate was also studied in this work.

Open access
Corrosion resistance of AZ31 magnesium alloy treated by plasma electrolytic oxidation

Abstract

The coating prepared by plasma electrolytic oxidation (PEO) was created on AZ31 magnesium alloy surface with the aim to evaluate its effect on corrosion resistance. The DC current was applied on the sample in solution consisted of 10 g/l Na3PO4·12H2O and 1 g/l KOH. Additional samples were prepared with 2 and 4 minutes of preparation to observe evolution of the PEO coating. Morphology of the coatings was evaluated by scanning electron microscopy and chemical composition was examined by EDX analysis. Electrochemical characteristic were measured by potentiodynamic polarization tests and electrochemical impedance spectroscopy in 0.1 M NaCl at the laboratory temperature. Obtained data were presented in form of potentiodynamic curves and Nyquist diagrams. Results of analysis showed that plasma electrolytic oxidation coating positively influence corrosion resistance of AZ31 magnesium alloy in chosen corrosive environment.

Open access
Evolution of microstructure and electrochemical corrosion characteristics of cold compacted magnesium

Abstract

The main advantage of magnesium and its alloys is high specific strength and biocompatibility. A modern approach to magnesium-based materials preparation is powder metallurgy. This technique allows preparation of new materials with a unique structure, chemical composition, and controlled porosity. In this study, cold compaction of magnesium powder was studied. Magnesium powder of average particle size of 30 μm was compacted applying pressures of 100 MPa, 200 MPa, 300 MPa, 400 MPa and 500 MPa at laboratory temperature. Influence of compacting pressure was studied with microstructural and electrochemical corrosion characteristics analysis. The resulting microstructure was studied in terms of light and electron microscopy. Obtained electrochemical characteristics were compared with those of wrought magnesium. Compacting pressure had a significant influence on microstructure and electrochemical characteristics of prepared bulk magnesium. With the increase in compaction pressure, the porosity decreased. Compacting pressures of 300 MPa, 400 MPa and 500 MPa led to the similar microstructure of the prepared material. Polarization resistance of compacted magnesium was much lower and samples degraded faster when compared to wrought magnesium. Also, the corrosion degradation mechanism changed due to the microstructural differences between the material states.

Open access