Search Results

You are looking at 1 - 10 of 24 items for

  • Author: J. Szajnar x
Clear All Modify Search
Open access

A. Studnicki and J. Szajnar

Investigation of Wear Resistant of Low-Alloyed and Chromium Cast Steel

Results of investigations of wear resistant of two species of cast steel were introduced in the article (low-alloyed and chromium cast steel) on the background of the standard material which was low alloy wear resistant steel about the trade name CREUSABRO ®8000. The investigations were executed with two methods: abrasive wears in the stream of loose particles (the stream of quartz sand) and abrasive wears particles fixed (abrasive paper with the silicon carbide). Comparing the results of investigations in the experiments was based about the counted wear index which characterizes the wears of the studied material in the relation to the standard material.

Open access

T. Wróbel and J. Szajnar

Abstract

The paper presents modification of primary structure of Al 99,5% and 99,8% purity and AlSi2 alloy by electromagnetic stirring of liquid metal within foundry mould. The movement of solidifying liquid metal within the mould was forced by horizontal electromagnetic field produced by the induction coil (stirrer), supplied by current of elevated frequency. The structure refinement obtained by electromagnetic stirring was compared with refinement obtained by traditional modification, i.e. by introducing Ti, B, C and Sr modifying additives into melt. The results of studies show possibility of effective primary structure refinement of pure Al and selected Al-Si alloy by using only horizontal electromagnetic field, without necessity of Ti, B and C additives application.

Open access

A. Walasek and J. Szajnar

The Mechanism of the Surface Alloy Layer Creation for Cast Steel

The paper presents a detailed description of the process of creation of a surface alloy layer (using high-carbon ferrochromium) on the cast steel casting. The mechanism of the surface alloy layer is based on the known theories [5,6]. The proposed course of formation of the layers has been extended to decarburization stage of steel. The research included proving the presence of carbon-lean zone. The experiment included the analysis of the distribution of elements and microhardness measurement.

Open access

J. Szajnar, A. Walasek and C. Baron

Abstract

There are presented the results of researches conducted on the steel cast with surface alloy layer in this work. The measurement of the thickness, hardness and abrasion wear resistance was conducted in accordance with norm ASTM G 65-00. The measurement of the corrosion resistance was conducted in accordance with the potentio - dynamical method. It is shown that it is possible to obtain the alloy surface layer of different thickness by control of some factors: pouring temperature Tzal , diameter of grain of FeCrC alloy Zw and the thickness of the cast wall gśo. It is proved that the smaller diameter of ferrochromium grain, the thicker surface alloy layer. It is also said that the higher pouring temperature and thicker the cast wall, the thicker surface alloy layer. What is more - the smaller thickness of the cast wall, the bigger hardness and abrasion wear resistance.

Open access

J. Szajnar, A. Dulska, T. Wróbel and J. Suchoń

Abstract

In paper a method of improvement in utility properties of unalloyed cast steel casting in result of diffusion of C and Cr in process of creation of surface layer is presented. The aim of paper was determination of diffusion range of basic elements of alloyed surface layer. Moreover a quantitative analysis of carbides phase strengthens alloyed surface layer of casting was carried out. The results of studies shown that important factors of surface layer creation are maximal temperature Tmax on granular insert – cast steel boundary dependent of pouring temperature, granularity Zw of Fe-Cr-C alloy insert and thickness of casting wall gśo. On the basis of obtained results was affirmed that with increase of thickness of casting wall increases range of diffusion in solid state in Fe-Cr-C grains and in liquid state. Moreover the range of Tmax = 13001500oC favours creation of the proper alloyed surface layers on cast steel.

Open access

D. Bartocha, J. Suchoń, Cz. Baron and J. Szajnar

Abstract

In the article there are presented methods and results of investigation which main aim were determination of influence of melting technology (gas extraction, vacuum refining, slag refining and extraction, deoxidation and degassing) and type of used modifiers on the type and shape of non-metallic inclusions and the primary structure refining. Low alloy cast steel melted in laboratory conditions, in an inductive furnace was investigated. Additions of FeNb, FeV, FeTi and FeZr modifiers were applied. The contents of oxygen and nitrogen in obtained cast steel were determined.

The most advantageous impact on refining of the primary structure of has been found for the modifiers FeTi+FeZr. In cast steel with the addition of Zr the conglomerates from a different non -metallic inclusions have been observed. Zirconium probably plays role of the nucleus - creating for other inclusions present in the conglomerates. Clusters of inclusions due to their size affect the crystallization and grain growth processes reducing grain size of the primary structure.

Open access

A. Dulska, A. Studnicki and J. Szajnar

Abstract

The paper presents a proprietary method of making composite cast iron (eutectic) locally reinforced with ceramics. The research included making casts with a ceramic layer, its percentage of the surface was 30%. The research included abrasive wear resistance according to ASTM G 65-00. As a result of the research it has been found that the infiltration of the molten metal into the ceramic preform mainly affects the correct production of the cast with local reinforcement. The research results also have proven that the application of a lattice ceramic insert placed in the mould is the most appropriate option, due to the even distribution of the particles in the cast and obtaining a sound cast.

Open access

J. Szajnar, M. Stawarz, T. Wróbel and W. Sebzda

Abstract

In paper problem concerning modification of grey cast iron EN-GJL-200 Grade, which is realized mainly by intensification of liquid metal movement in horizontal continuous casting mould containing electromagnetic stirrer is presented. The range of studies contains influence of electromagnetic field on morphology of graphite and usable properties i.e. tensile strength, hardness and machinability. Moreover the influence of velocity of ingot pulling on microstructure was analyzed. The results of studies and their analysis show possibility of improvement in quality of grey cast iron continuous ingot firstly in result of elimination of hard spots in structure by properly selection of velocity of ingot pulling and second in result of unification of size, shape and distribution of flake graphite by application of electromagnetic field.

Open access

J. Szajnar, C. Baron and A. Walasek

Abstract

The paper presents the results of simulation of alloy layer formation process on the model casting. The first aim of this study was to determine the influence of the location of the heat center on alloy layer’s thickness with the use of computer simulation. The second aim of this study was to predict the thickness of the layer. For changes of technological parameters, the distribution of temperature in the model casting and temperature changes in the characteristic points of the casting were found for established changes of technological parameters. Numerical calculations were performed using programs NovaFlow&Solid. The process of obtaining the alloy layer with good quality and proper thickness depends on: pouring temperature, time of premould hold at the temperature above 1300°C. The obtained results of simulation were loaded to authorial program Preforma 1.1 in order to determine the predicted thickness of the alloy casting.

Open access

M. Kondracki, A. Studnicki and J. Szajnar

Abstract

In the paper the results and analysis of corrosion tests were presented for low-alloyed cast steel in as-cast state and after heat treatment operations. Such alloys are applied for heavy loaded parts manufacturing, especially for mining industry. The corrosion test were performed in conditions of high salinity, similar to those occurring during the coal mining. The results have shown, that small changes in chemical composition and the heat treatment influence significantly the corrosion behaviour of studied low-alloyed cast steels.