Search Results

1 - 2 of 2 items

  • Author: J. Klavins x
Clear All Modify Search
Zeolite as Material for Hydrogen Storage in Transport Applications / CEOLĪTA KĀ ŪDEŅRAŽA UZGLABĀŠANAS VIDES IZPĒTE

For transport needs the hydrogen is mostly stored in a compressed (at 350-700 bars) form, while methods for its storage at lower pressures are rapidly developing. In particular, nanoporous oxides and zeolites, which do not normally absorb notable amount of hydrogen, with a small Pd additive or ion exchange demonstrate enhanced hydrogen adsorption properties. An original thermogravimetric method has been developed to study the hydrogen adsorption in zeolite, consisting of its heating in the inert gas (argon, nitrogen) flow and cooling in the hydrogen atmosphere. It is found that natural zeolite (clinoptilolite) with Mg-ion exchange possesses a high adsorption capacity for hydrogen - up to 6.2 wt%, which is explained by its encapsulation in zeolite pores. The FTIR spectra of the hydrogen-treated samples have shown new absorption bands at 2340 and 2360 cm-1.

Open access
Screen Printing of SU-8 Layers for Microstructure Fabrication / Ar Sietspiedi Uzklātu SU-8 Pārklājumi Mikro-Struktūru Izgatavošanai


We report on a screen printing fabrication process for large-area SU-8 layers utilised for the preparation of microstructures in display devices such as microelectronic, electrowetting or bistable devices. The screen printing method has been selected for its effectiveness and simplicity over traditionally used spin-coating ones. Layers and microstructures produced thereof have shown proper homogeneity. Relationships between screen parameters to coating thickness have been established. Coating on an ITO (indium tin oxide) hydrophobic surface is possible when surface has been treated by UV/Ozone to increase its aqueous ability. To this end, the hydrophilic microstructure grids have been successfully built on a hydrophobic layer by screen printing and traditional lithography processes. Compared to conventional spin-coating methods, the screen printing method offers the advantages of simple, cheap and fast fabrication, and is especially suitable for large-area display fabrication

Open access