Search Results

You are looking at 1 - 6 of 6 items for

  • Author: J. Jasak x
Clear All Modify Search
Open access

G. Golański, M. Lachowicz, J. Słania, J. Jasak and P. Marszałek

The paper presents the research on the microstructure and mechanical properties of a pipe made of 16Mo3 steel, overlaid with superalloy based on Haynes NiCro625 nickel. The overlay weld was overlaid using the MIG (131) method. The performed macro - and microscopic tests have shown the correct structure of the overlay weld without any welding unconformities. The examined overlay weld was characterized by a dendritic structure of the primary crystals accumulating towards the heat removal. It has been proved that the content of iron in the surface zone does not exceed 7%, and the steel-superalloy joint shows the highest properties in comparison with the materials joined.

Open access

G. Golanski, A. Zielinski, J. Słania and J. Jasak

Abstract

The paper describes the influence of different times of ageing on mechanical properties and microstructure stability in hardened and tempered VM12 steel exposed to service temperature - 600°C. Detailed microstructural and microchemical analysis of secondary phases was carried out using scanning electron microscopy (SEM + EDX) and X-ray phase analysis of carbide isolates. Performed research has proved high stability of strength properties of the investigated steel, which is connected with the lath stability of the microstructure of tempered martensite. Slight changes in strength properties were accompanied by over 50% reduction in impact strength KV of the examined cast steel, from the level of 83 J in the as-received condition to 38 J after 30 000 hrs of ageing at the temperature of 600°C. Significant decrease in impact energy KV of VM12 steel results from the growth of the amount and size of precipitations on grain boundaries.

Open access

G. Golański, I. Pietryka, J. Słania, S. Mroziński and J. Jasak

The paper presents the results of research on the microstructure and mechanical properties of 12HMF steel after longterm service. The investigated material was taken from a pipeline with circumferential welded joint after 419 988 hours of service at the temperature of 490°C, steam pressure 8 MPa. Performed research has shown that the 12HMF steel after service was characterized by a typical microstructure for this grade of steel, that is a ferritic-bainitic microstructure without any visible advanced processes of its degradation. The investigation of mechanical properties has shown that the examined steel after service was characterized by a very low impact energy KV, and yield strength lower than the required minimum. Whilst tensile strength and yield strength determined at elevated temperature was higher and similar to the standard requirements, respectively. It has been proved that the main cause of an increase in brittleness and a decrease in yield strength of the examined steel should be seen in the segregation of phosphorus to grain boundaries and the formation of precipitate free zones near the boundaries.

Open access

K. Wojsyk, G. Golański, J. Jasak, J. Słania, A. Zieliński and P. Urbańczyk

Abstract

The paper presents the results of research on the influence of the time of annealing after welding at the temperature of 750°C on the mechanical properties of a homogeneous welded joint of T91 steel. The welded joints were annealed at 750°C for 0.5; 1.0; 1.5 and 2.0 hours. The research scope included the basic study, i.e. the measurement of hardness, the test of impact energy, the static tensile test, bending test, as well as the accelerated creep test. The results of the tests of mechanical properties indicate the possibility of using shorter annealing times for thin-walled welded joints, and thus the possibility of savings as a result of flexible heat treatments.

Open access

G. Golański, I. Pietryka, J. Jasak, J. Słania, P. Urbańczyk and P. Wieczorek

Abstract

The results of a microstructure examination and mechanical properties of 15HM (13CrMo4-5) steel are presented in the article. The examined elements are the samples taken from the live steam pipeline serviced for about 420 000 hours at the temperature of about 510°C, and pressure of 11 MPa. It has been shown that after long-term operation the examined steel has a ferritic-pearlitic microstructure with a dominant content of quasipolygonal ferrite. The processes of fragmentation of lamellar precipitates and their spheroidization were observed in pearlite. On the grain boundaries, single lamellar precipitations were observed. Moreover, numerous precipitations at the interface of three grain boundaries were revealed. The examined steel, despite its long-term service time, was characterized by the strength properties (YS, TS) slightly lower than the required minimum, the impact energy value KV equal to 20 J, and the transition temperature shifted to a temperature above zero. Relatively low level of degradation of the microstructure and mechanical properties of the investigated steel can result from high stability of the ferritic-pearlitic microstructure.

Open access

G. Golański, J. Jasak, A. Zieliński, C. Kolan, M. Urzynicok and P. Wieczorek

Abstract

The paper presents the results of research on the microstructure of martensitic X10CrMoVNb9-1 (P91) and X13CrMoCo- VNbNB9-2-1 (PB2) steel subject to long-term ageing at the temperature of 620°C and holding times up to 30 000 hours. The microstructural tests of the examined steel types were performed using a scanning microscope Joel JSM - 6610LV and a transmission electron microscope TITAN 80 - 300. The stability of the microstructure of the investigated steels was analyzed using a quantitative analysis of an image, including measurements of the following: the density of dislocations inside martensite/subgrain laths, the width of martensite laths, and the mean diameter of precipitates. It has been concluded that during long-term ageing, the microaddition of boron in PB2 steel significantly influenced the slowing of the process of degradation of the martensitic steel microstructure, as a result of slowing the process of coagulation of M23C6 carbides and Laves phase. It had a favorable effect on the stabilization of lath microstructure as a result of retardation of the processes of recovery and polygonization of the matrix.