Search Results

You are looking at 1 - 1 of 1 items for

  • Author: Jörg Benndorf x
Clear All Modify Search
Open access

Wojciech Naworyta and Jörg Benndorf

Ocena dokładności geostatystycznych metod modelowania złóż pod kątem projektowania eksploatacji na podstawie jednego ze złóż węgla brunatnego

We wszystkich fazach zagospodarowania złoża węgla brunatnego wymagane jest odpowiednie rozpoznanie jego kluczowych parametrów strukturalnych i jakościowych, tj. miąższość pokładu, wartość opałowa węgla, popielność, zawartość siarki. Od właściwego rozpoznania przestrzennej zmienności parametrów złoża zależy optymalne wykorzystanie jego zasobów jak i możliwość odpowiedniego planowania eksploatacji pod kątem utrzymania jakości strumienia surowca. Bazując na danych z rozpoznania geologicznego wykonywane są modele złoża. Do modelowania wykorzystywane są różne metody, wśród których popularne stają się metody geostatystyczne. Wybór metody zależy od celu modelowania.

W artykule przedstawiono wielokryterialne analizy metod geostatystycznych używanych do modelowania złóż. Na podstawie obserwacji geologicznych złoża węgla brunatnego wykonano modele wartości opałowej węgla Q metodą krigingu zwyczajnego (OK) oraz metodą geostatystycznej symulacji warunkowej (SGSIM). Modele przeanalizowano pod kątem wierności odwzorowania cech danych źródłowych, tj. wartości średniej, wariancji oraz struktury. Modele porównano z modelem referencyjnym opartym na danych pozyskanych w procesie eksploatacji złoża. Obliczono miary odchyleń - średni błąd względny i absolutny błąd względny oraz współczynnik korelacji. Porównano modele pod względem ogólnych cech statystycznych oraz zmienności lokalnej.

Na podstawie analiz sformułowano wnioski dotyczące przydatności metod do rozwiązywania różnych zadań z zakresu projektowania górniczego. Do szacowania wartości średniej parametrów złoża wystarczająco dokładne wyniki dostarcza kriging zwyczajny. Do zadań związanych z określeniem prawdopodobieństwa albo ryzyka przekroczenia krytycznych wartości parametrów złoża bardziej wiarygodnych wyników niż kriging dostarcza metoda symulacji. Modele wykonane tą metodą wiernie oddają strukturę danych źródłowych.