Search Results

1 - 7 of 7 items

  • Author: Iwona Frydrych x
Clear All Modify Search

Abstract

It appears that from generation to generation the anthropometric dimensions of the human population are changing. The aim of this paper was to examine the extent of these changes and the need for generating updated measurements for the clothing industry. The clothing industry uses mannequins and avatars to represent the modal group of the population. The industry tends to use three different categories for the human body shape (endomorphic, mesomorphic, and ectomorphic). The clothing industry should focus on specific measurements of the body rather than general categories and create more body shapes to satisfy customer needs. The paper also aimed at showing the problems faced by clothing designers. The traditional way of measuring takes into account only selected dimensions of the human body; this does not reflect the “true” overall body shape. The dimension tables used by the apparel industry are based on the fourth anthropometric photograph taken between 1987 and 1989. These tables are still in the use currently; however, after 30 years they are outdated and should be revised for the young contemporary generation. This study can be used for the development of new dimension tables as well as defining methods aimed at improving the quality of measurements for clothing engineering purposes. This is an important issue, because the National Institute of Anthropometry does not deal with such problems (the measurements are conducted mainly for understanding the human body shape rather than any other application), which means that anthropometric measurements are not ideally suited to applications of clothes fitting.

Abstract

Currently, scientists are striving to produce innovative textile materials characterized by special properties. Therefore, attempts have been made to use physical and chemical vapor deposition techniques to modify the surface of textile materials, i.e., nonwovens, fabrics, and knitted fabrics. By using these techniques for modifying the basic materials, researchers have obtained textiles with novel properties, which are used in shielding materials, textronics, or clothing, as well as in specialized accessories. The PVD process can be applied for almost all materials. The physical vapor deposition process allows for obtaining layers of different thicknesses and with various physical and chemical properties. This article is a review of the latest state of the art on the use of various methods of physical vapor deposition in textiles destined for different purposes.

Abstract

The currently used methods of ergonomic assessment of protective clothing depend on the subjective feeling of research participants and don’t take into consideration all aspects of its use. Therefore, more amount of work is undertaken toward the development of new research tools for the ergonomic assessment of protective clothing. Research was carried out at the Central Institute for Labour Protection – National Research Institute in Lodz. A new methodology will take into consideration a variant of reference clothing, which is related to the results of ergonomics research of protective clothing. Preparation of the reference clothing initiated by picking the appropriate fabric is based on the results of parameters influencing the physiological comfort and sensorial comfort. In the current part, results of different fabric parameters are presented, which are related to physiological comfort, i.e., the thermal resistance, water vapor resistance, hygroscopicity, and air permeability. In the next part of research, we will focus on the parameters related to objective sensorial feelings, i.e., total hand value and its components. Seven fabrics, including six cotton/polyester fabrics, diverse in terms of constituent fiber content and structure parameters (weave, thread density per 1 dm, thread linear density, mass per square meter, thickness), and Tencel/polyester fabric were tested. The best in terms of thermal resistance, water vapor resistance, and air permeability was the cotton/polyester fabric (35% cotton/65% PES) with the smallest mass per square meter. This fabric also exhibits the high hygroscopicity of 7.5%, which puts it into the fourth position.

Abstract

The layer of aerogel was applied to the surface of basalt fabric due to the possibility of improving a fabric protecting against the influence of hot environmental factors. The analysis of aerogel surface roughness and thickness of the obtained sample, resistance to contact heat for the contact temperature between 100°C and 250°C, and tests of resistance to the penetration of thermal radiation were carried out. In addition, thermal conductivity, thermal resistance, thermal diffusion, thermal absorption, and surface roughness were determined. The obtained results indicate the unevenness of aerogel application on the surface of basalt fabric. For this reason, work should be carried out on an appropriate technology that will allow them to be applied evenly on the surface of the fabric. The parameters tested and the results obtained are promising in terms of the possibility of using the fabric obtained in protective gloves.

Abstract

Basalt fibers and fabrics made of these are characterized by excellent thermal and mechanical properties. Therefore, basalt fabrics, due to a good resistance to high temperatures, are frequently applied in the personal protection equipment (PPE). In order to improve their thermal properties and, above all, the contact heat resistance, the process of physical vapor deposition was proposed. The process of Physical Vapor Deposition (PVD) involves producing a coating on a specific substrate as a result of physical deposition of molecules, ions or atoms of the selected chemical compounds. The method selected for the test is the magnetron sputtering. It involves depositing a uniform film of chromium on the surface of the basalt fabric. In order to improve the thermal properties – especially the contact heat resistance, two values of thickness of the chromium layer deposited on the basalt fabric surface were adopted for the test. Covering 1 μm and 5 μm with the chromium layer did not fulfil the expectations and the research will be continued.

Abstract

The main purpose of this study is the selection of a proper fabric for the reference clothing for ergonomic tests of protective clothing. For research, seven fabric of different raw material content and different structure were chosen. We studied the handle of fabrics produced from blend of polyester/cotton and polyester/Tencel, which were designated by letters from A to G. The assessment of handle of the fabric was performed based on the mechanical properties of fabrics using Kawabata evaluation system (KES-system). It was proven that one of the tested fabrics (F) made of polyester and cotton fibers (85% PES / 15% cotton) with the reinforced twill weave is characterized by the highest total hand value (THV).The high THV results from the low value of koshi (stiffness) and the highest value of numeri (smoothness) and fukurami (fullness). However, in terms of physiological comfort, the lower value of fukurami is more preferred. It turned out that the fabric with the higher value of fukurami (including fabric F) is characterized by the lower air permeability and higher water vapor resistance. At the end, we decided that the reference clothing will be made of cotton/polyester fabric G with the lowest mass per square meter because of the very good physiological comfort parameters and the satisfactory sensorial comfort parameters.

Abstract

The clothing industry is currently focused on 3D virtual fitting. Many companies use size 12 as the core size; however, in recent years the average size has increased. For example, in the United Kingdom, the average size is now 16. Many companies have not updated their core size and often use size 12 as the size they are the most familiar with. The purpose of this paper is to compare real plus size body shapes with artificial avatars in relation to the fabric draping. This paper will investigate, how the body shape changes with an age (body height decreases, skin elasticity is lower, the shoulders are hunched, buttocks sag and fatness pockets are accumulated around the waist area). These factors are not considered in virtual avatars, but have a big impact on virtual fitting.