Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Irina Pticina x
Clear All Modify Search
Open access

Irina Yatskiv, Irina Pticina and Mihails Savrasovs

Urban Public Transport System's Reliability Estimation Using Microscopic Simulation

In the article the procedure of the reliability measures estimation for one route of the public transport network on the basis of a traffic flow modelling is suggested. A definition of UPTS reliability is based on the analysis of the Travel Time Reliability, Arrival Time Reliability and Probability of arriving to the stops with delay no more than m minutes. The approach is applied to the real task of the reliability estimation for Riga city public transport route. The microscopic model of transport network fragment is used for it.

Open access

Mihails Savrasovs, Irina Pticina, Valery Zemlyanikin and Ioannis Karakikes


The current paper aim is to present the technique of demand data modelling for microscopic simulation of the traffic flows. Traffic microscopic simulation is a powerful decision supporting tool, which could be applied for a wide range of tasks. In a past microscopic traffic simulation was used to test local changes in transport infrastructure, but the growth of computers performance allows now to simulate wide-scale fragments of the traffic network and to apply more advanced traffic flow simulation approaches, like an example dynamic assignment (DA). The results, obtained in the frame of this research are part of the project completed for one of the shopping malls (Riga, Latvia). The goal of the project was to evaluate different development scenarios of the transport network to raise the accessibility of the shopping mall. The number of practical issues in the frame of this project pushed to develop a new technique to model the demand data for the simulation model. As a traffic flow simulation tool, the PTV VISSIM simulation software was applied. The developed model was based on dynamic assignment approach. To complete the simulation the demand data was represented in two forms: 1) OD matrix for regular traffic in the transport network; 2) trip-chain file for a description of the pass-by and targeted trips.